算法

机器学习与人工智能(二)

陈一帅

yschen@bjtu.edu.cn

北京交通大学电子信息工程学院

网络智能实验室 1 / 137

内容

- 介绍
- 机器学习模型
- 深度学习模型
- 模型训练
- 模型选择

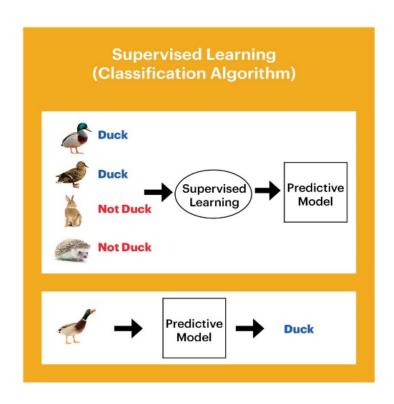
算法

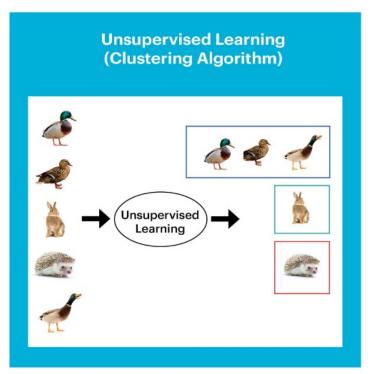
- 有监督
- 无监督
- 半监督
- 增强学习

有监督和无监督

• 有监督:已知正确答案,比如图片类别

• 无监督: 没有正确答案, 比如只有图片





Western Digital.

1) 有监督学习

Supervised learning

已知正确答案

步骤

- 1. 打标
- 2. 训练
- 3. 测试

1) 打标

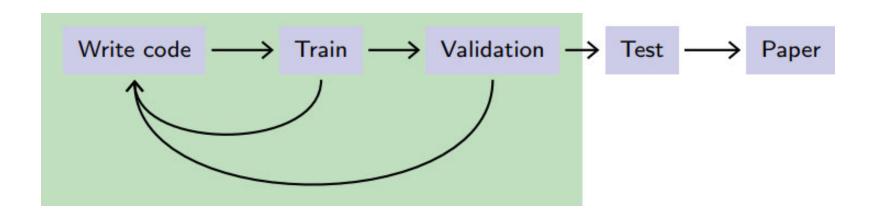
- 1. 收集数据集
- 2. 打标
 - 给图片标注:"猫","狗"
- 3. 把数据分为三部分
 - 训练集: 训练模型
 - 验证集: 选择模型参数
 - 测试集: 测试模型准确度

2) 训练模型

1. 训练: 训练模型

2. 验证: 选择模型参数

3. 测试: 在测试集上, 对模型进行最终的评估



2) 无监督学习

Unsupervised learning

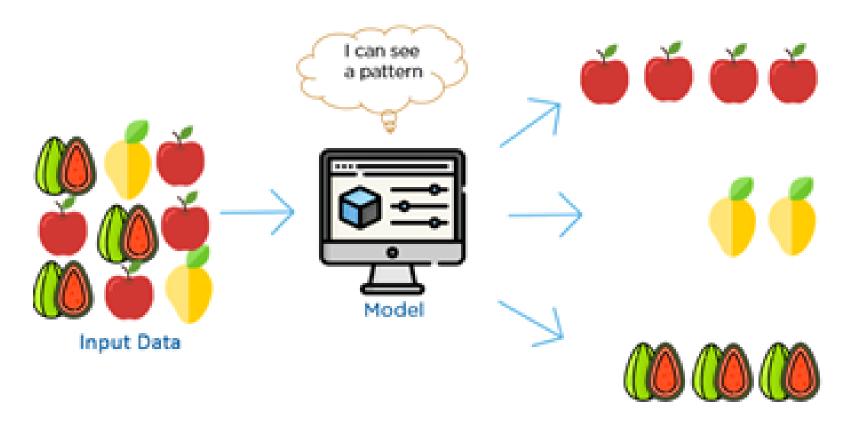
有数据,无标签,就在数据上寻找规律

1) 聚类

指定聚为3个簇

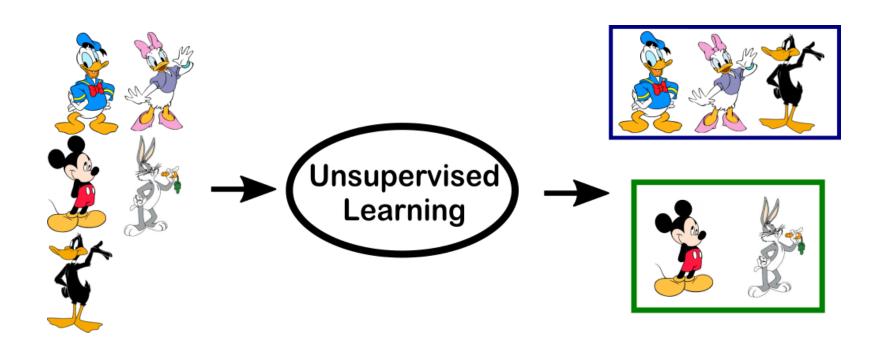
1) 聚类

- 聚完类后,观察各簇,获得其物理意义
- 结果可能是这样的



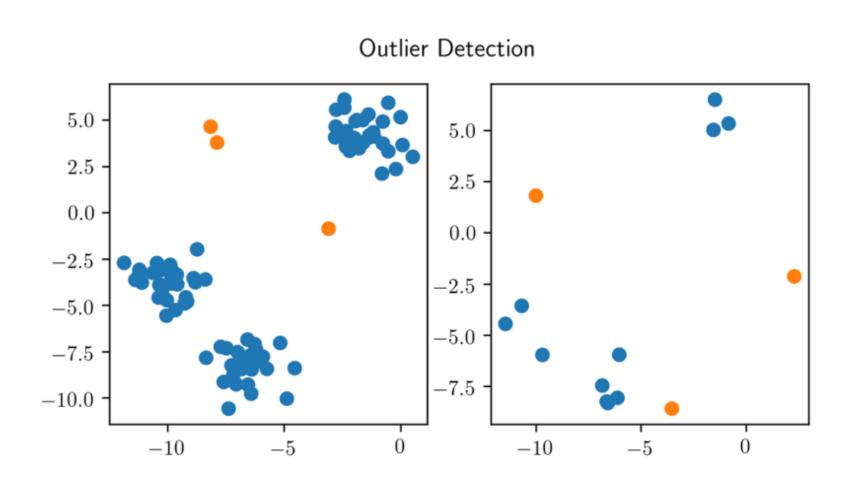
1) 聚类

• 结果也可能是这样的



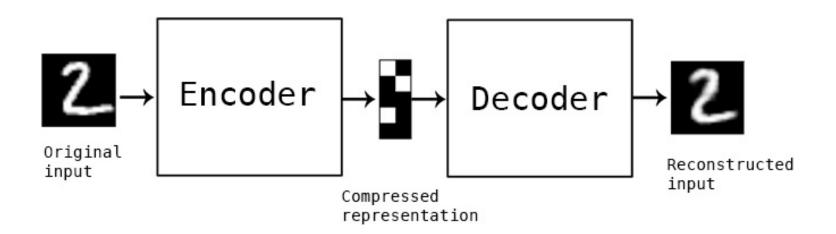
2) 异常检测

发现离群的点, 即异常点



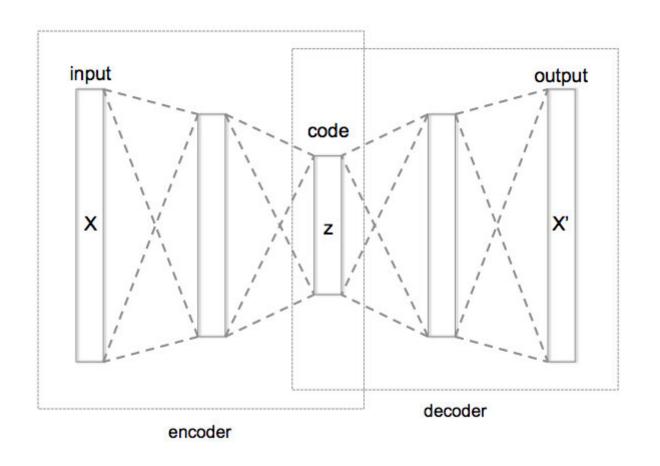
3) 自编码

- 编码压缩,得到原始图像的压缩表征
- 译码根据此压缩表征,恢复原图像



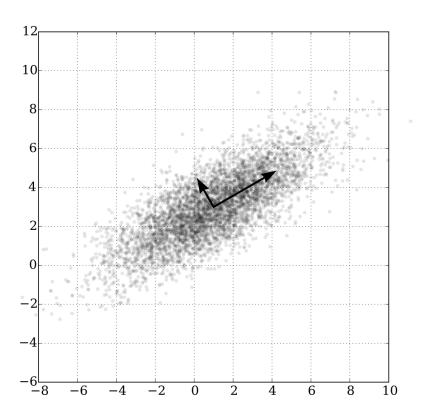
3) 自编码

- 压缩后的结果,就是自编码得到的数据的Code
- 一般用深度神经元网络做编码器和解码器



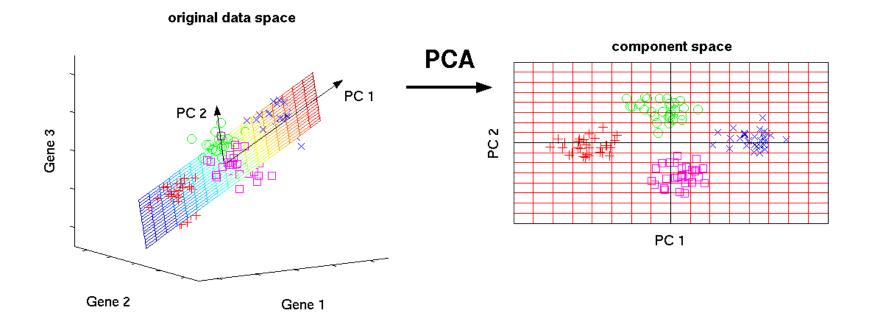
4) 主元素分析

- PCA: Principal Component Analysis
- 数据信息主要在其主元素向量上



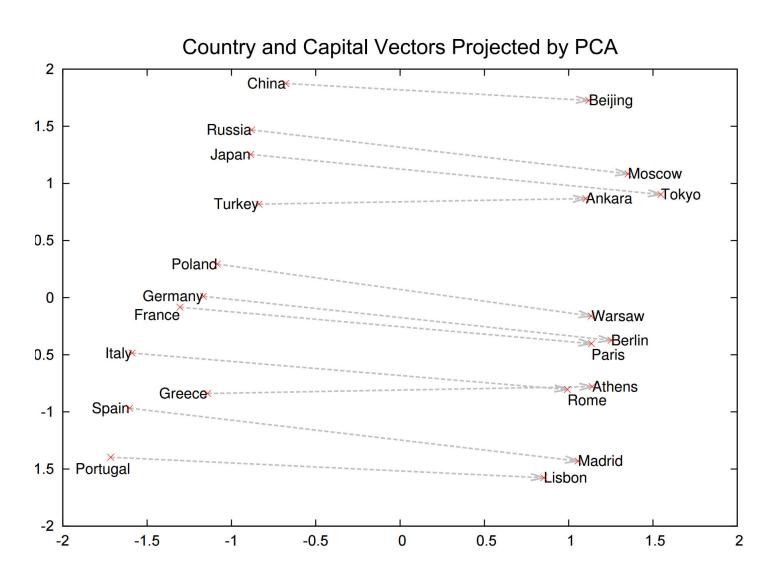
4) 主元素分析

- 利用PCA,将3维数据表示在2维上
- 丢失信息不多,达到了降维效果



4) 主元素分析

利用PCA得到的单词表征

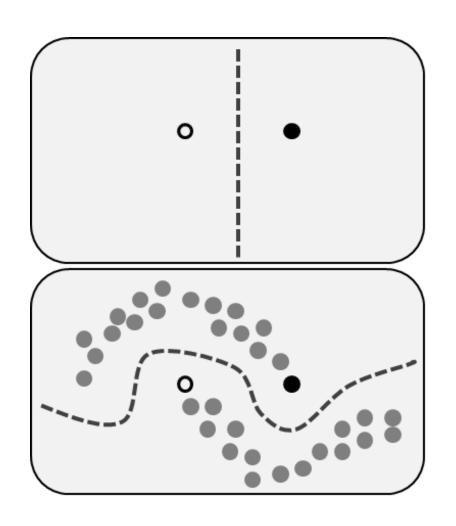


3) 半监督学习

Semisupervised Learning

半监督学习

打标费时费力,利用大量没有打标的数据,结合少量打标数据,提高性能



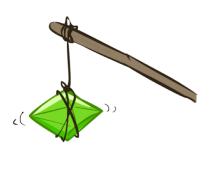
4) 增强学习

Reinforcement Learning

根据获得的回报, 进行学习

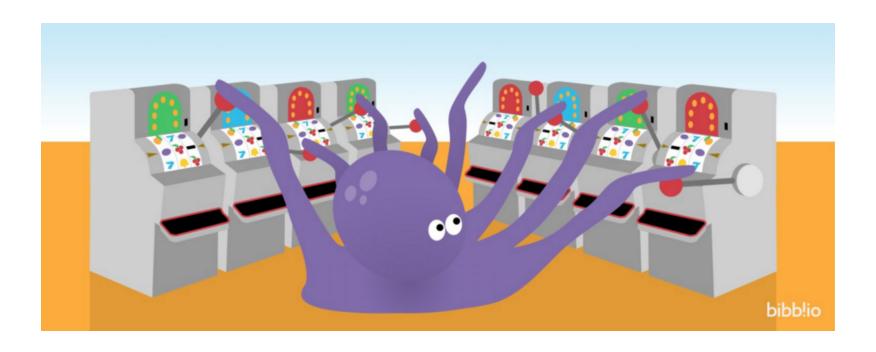
基于回报的学习

- 没有打标数据集
- 但能判断是否有回报reward
- 根据获得的回报,进行学习
- 目标: 最大化收益



多臂老虎机

Multi-Arm Bandit



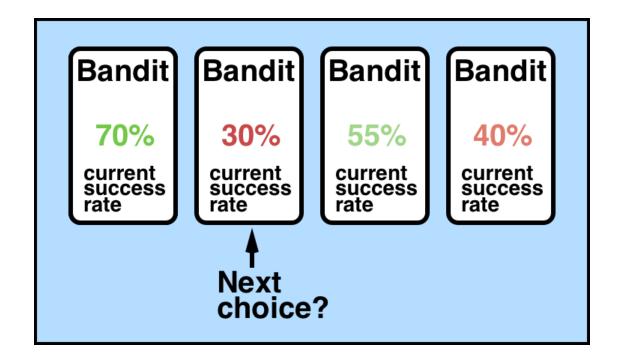
选择哪个机器玩呢?

多臂老虎机

• "利用": 玩已经发现的赢率最高的机器

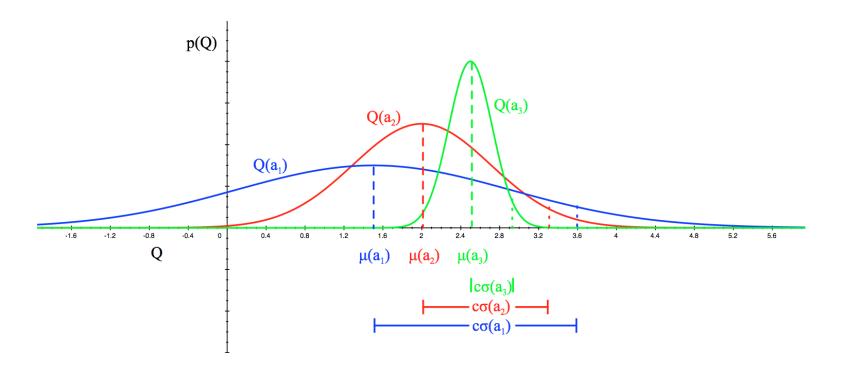
• "探索": 玩那些还没有充分探索的机器

• 关键: 平衡好"利用"和"探索"的关系



UCB算法

- Upper Confidence Bounds: 置信区间上界方法
- 包括了平均赢率(均值)和探索空间(标准差)
- 综合"利用"和"探索"两种信息

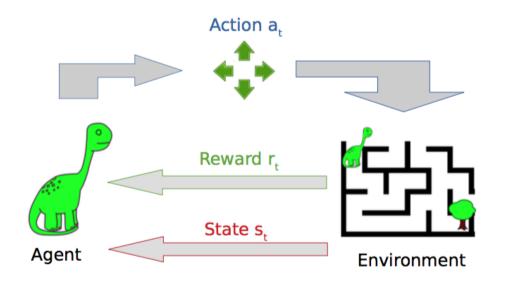


增强学习

- 进行大量尝试
- 跳进火坑也不怕

增强学习

- 不断尝试
- 得到每一个位置的"价值"
- 或者每一个位置下的最佳动作

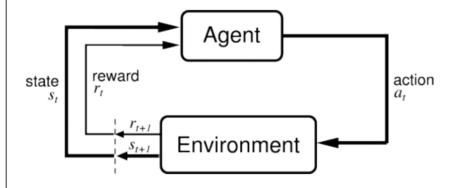


挑战

- 收益会有延时: 期末才知道成绩
- 收益反馈稀疏: 学了一个学期, 才有一个期末考试

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s_0
- Discount factor γ
- Horizon H



小结: 学习类型

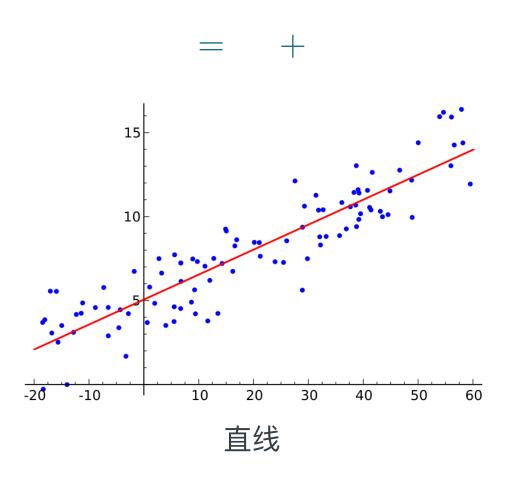
- 1. 有监督学习
 - 已知正确答案(标签)
- 2. 无监督学习
 - 从纯数据中发现规律
- 3. 半监督学习
 - 利用大量没有打标的数据
- 4. 增强学习
 - 通过尝试进行学习

模型

Model

线性回归

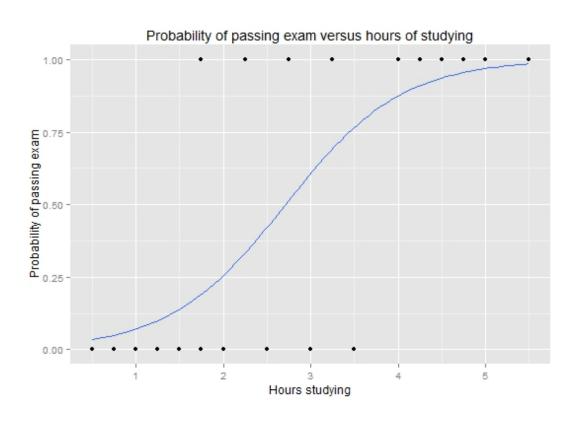
Linear Regression



Logistic回归

$$=rac{1}{1+rac{-(-+-)}{-(-+-)}}$$

考试通过与学习时间关系



$$() = \frac{1}{1 + -(1.5* -4)}$$

S曲线

感知机

模型人脑神经元

→ * → ≥

神经元模型

- 神经元 (脑细胞) 通过突触连接
- 大脑会不断创建、强化、弱化这些连接

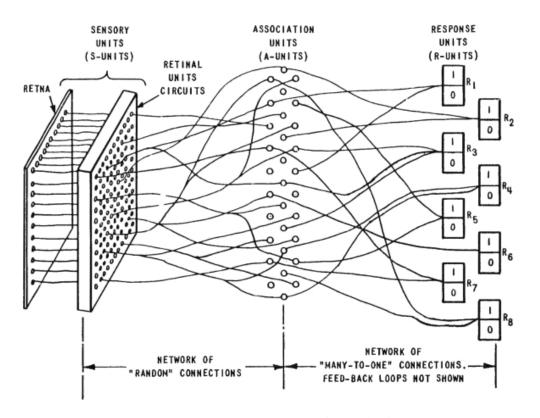


Figure 1 ORGANIZATION OF THE MARK I PERCEPTRON

神经元模型

输入的线性加权和

• :神经元输入

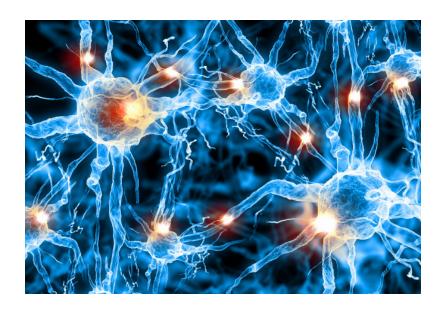
• :连接权重

• 1 1 + 2 2 + : 求和

神经元模型

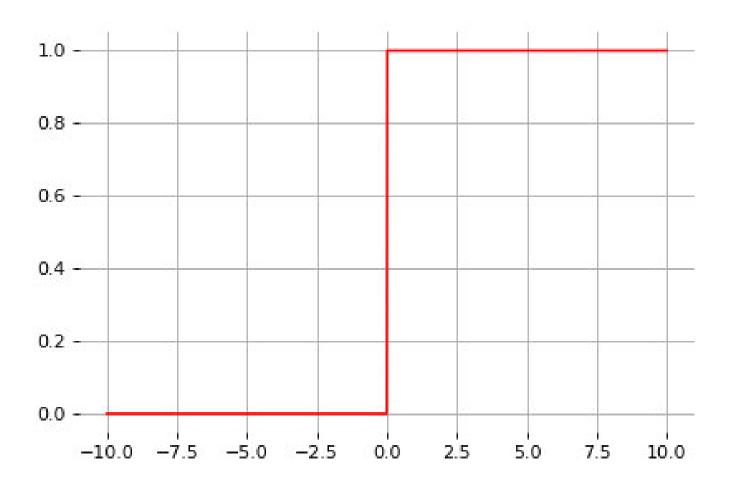
非线性激活函数

• $_{1} _{1} + _{2} _{2} + \geq 0$?



非线性激活函数 (): ≥ 0

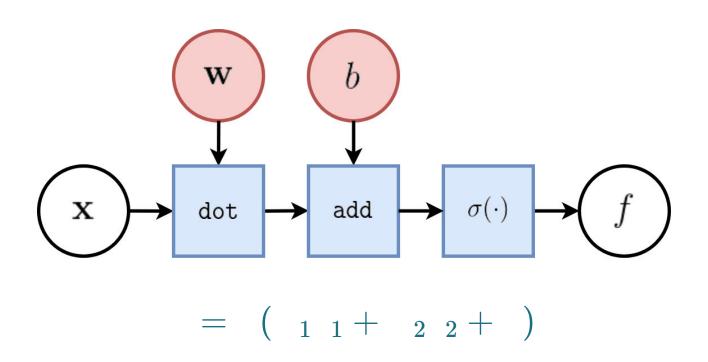
激活函数



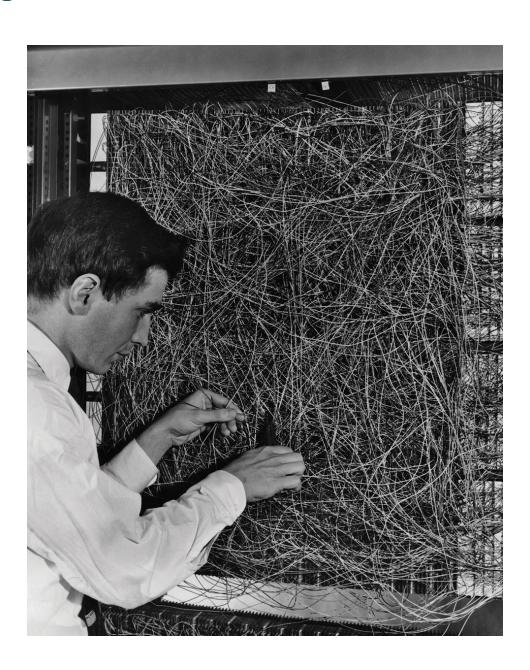
非线性激活函数 $(): \geq 0$

感知机

输入线性加权 + 非线性激活函数输出



感知机



模型训练方法

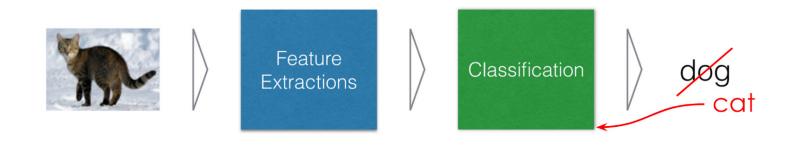
在错误中学习

大脑学习过程

- 根据实验结果,不断创建、强化、弱化神经元之间连接
- 也就是调整连接的权重:

机器学习的学习过程

• 出现错误,调整模型参数



Data independent

Supervised Learning

感知机的学习过程

• 发现错误,调整权重 , 使错误减少

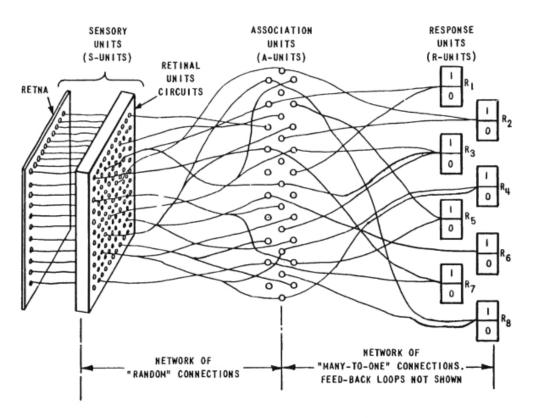
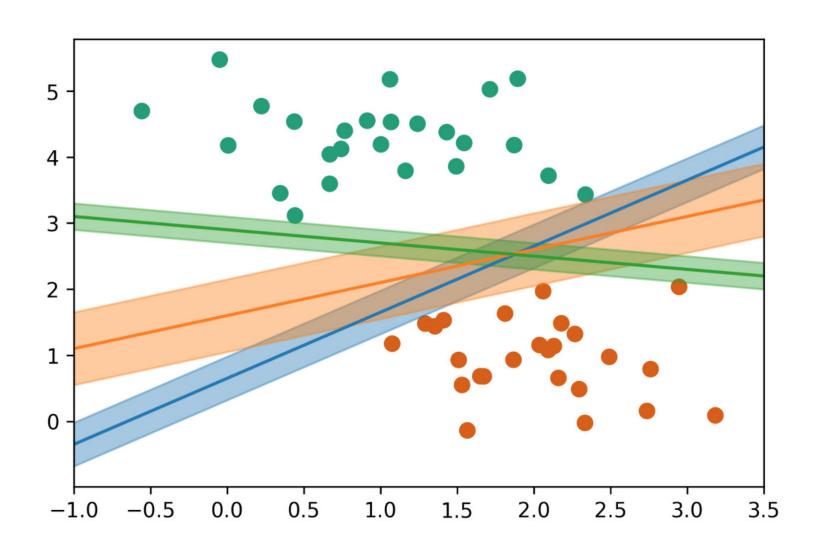


Figure 1 ORGANIZATION OF THE MARK I PERCEPTRON

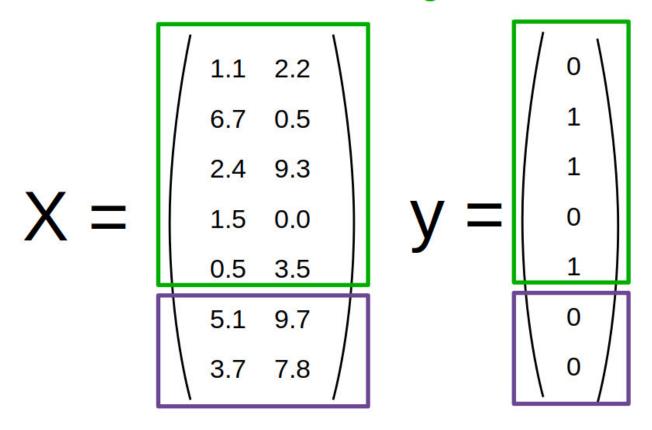
感知机的学习过程

• 发现错误,调整 ,调整决策边界



模型效果

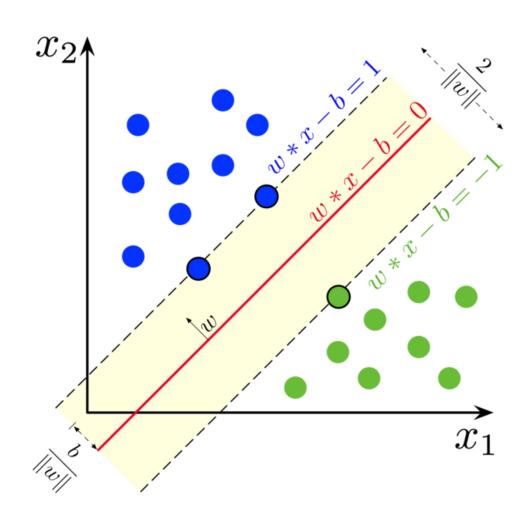
training set



test set

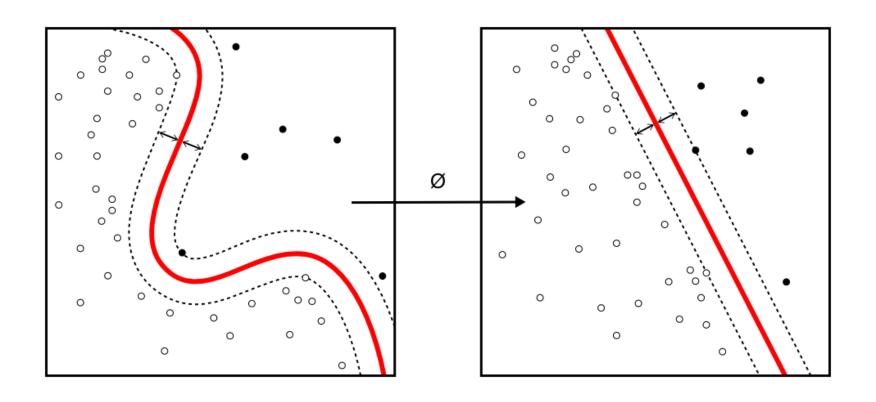
SVM: 支持向量机

不仅避免错误, 而且两边距离越远越好



核函数: 支持非线性边界

用非线性核函数代替向量点积,支持曲线边界

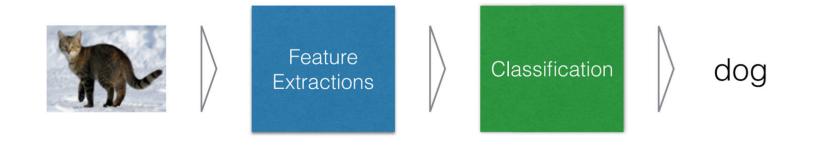


深度学习

Deep Learning

复习: 机器学习

- 先提取图片特征
- 然后根据这些特征进行学习

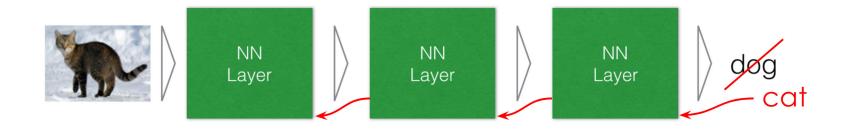


Data independent

Supervised Learning

深度学习

- 不专门提取数据特征
- 将原始数据直接送入多层神经元网络进行学习
- 出现错误,调整到底



Supervised Learning

常用结构

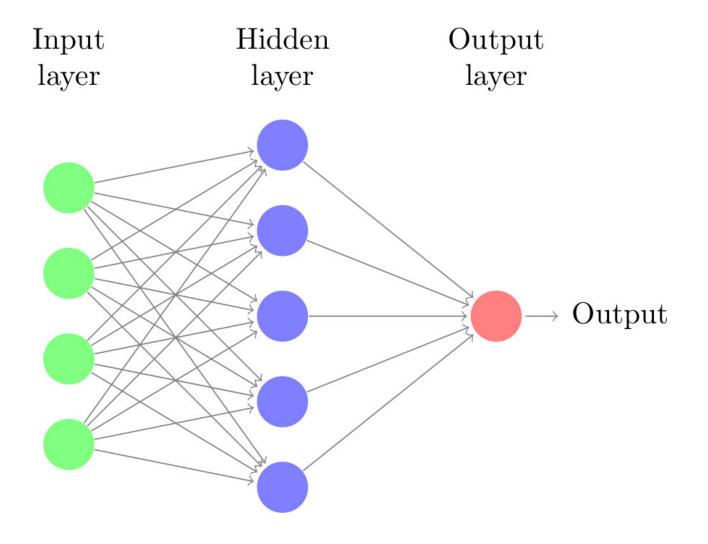
FFN, CNN, RNN

前向神经元网络

FFN: Feed Forward Network

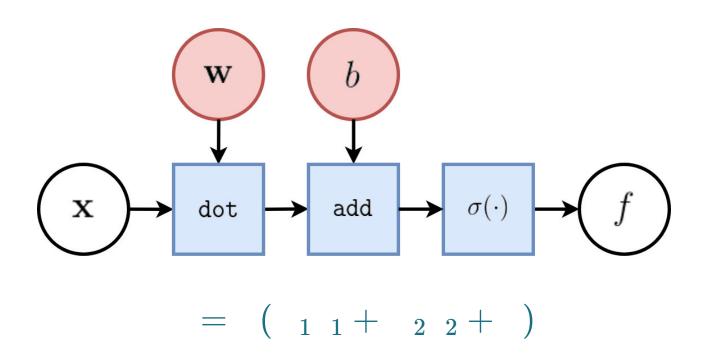
前向神经元网络

输入层,隐藏层,输出层

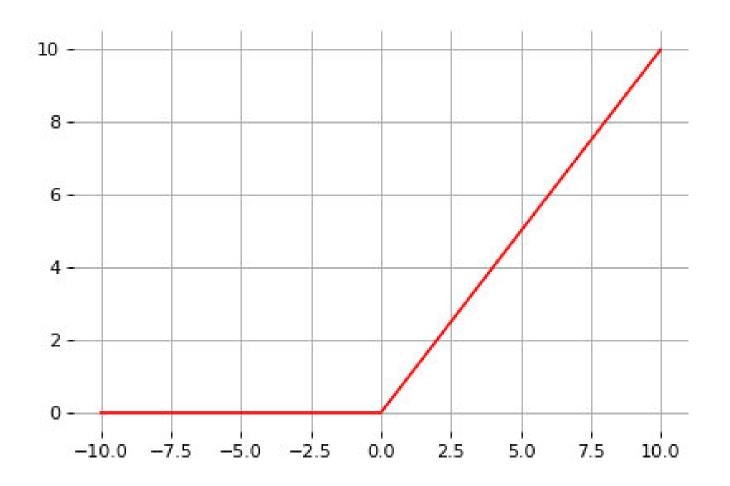


隐藏和输出层单元: 感知机

输入线性加权 + 非线性激活函数输出

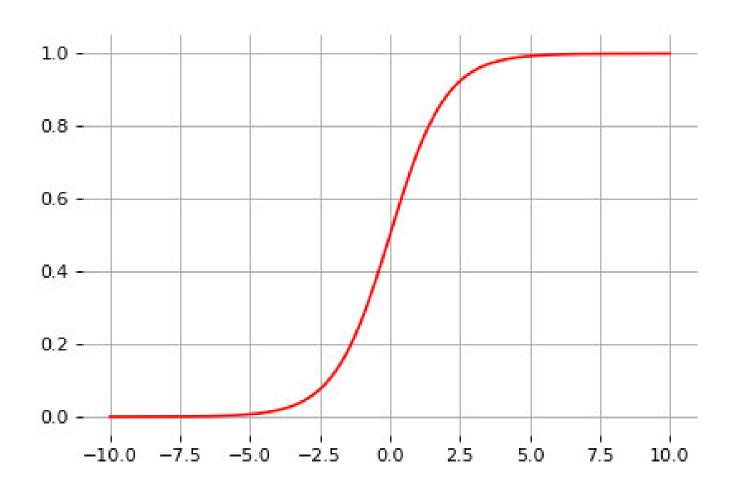


常用激活函数: ReLU



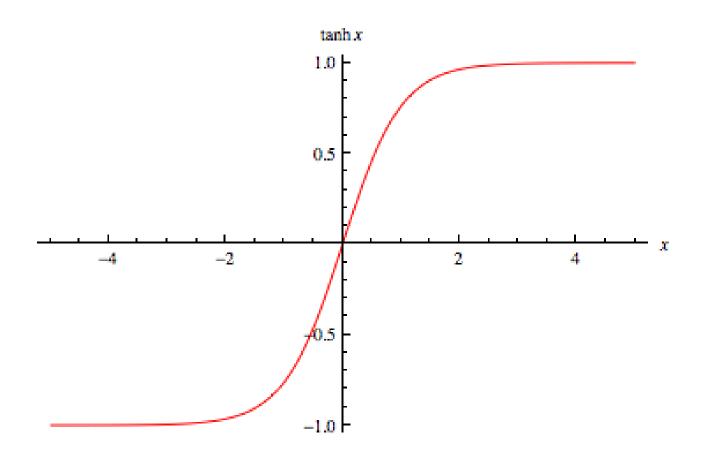
(): Rectified Linear Unit

常用激活函数: Sigmoid



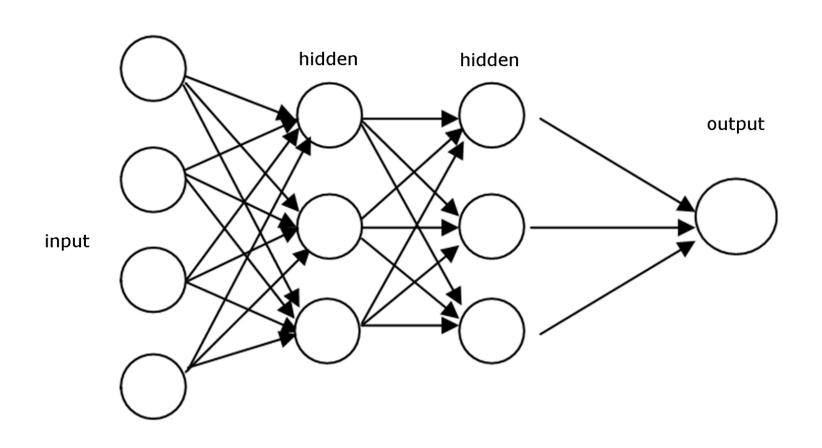
(): S曲线

常用激活函数: Tanh



(): Hyperboilic Tangent

深度神经元网络



多个隐藏层

深度的好处

越深,模型能力越强

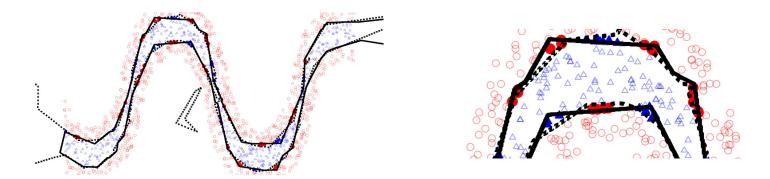
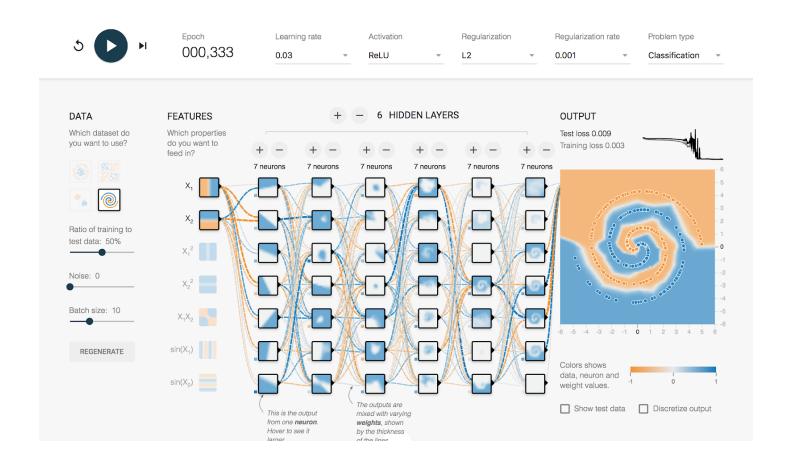


Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled markers indicate errors made by the shallow model.

FNN练习

- 基于浏览器的TensorFlow实验平台
- http://playground.tensorflow.org

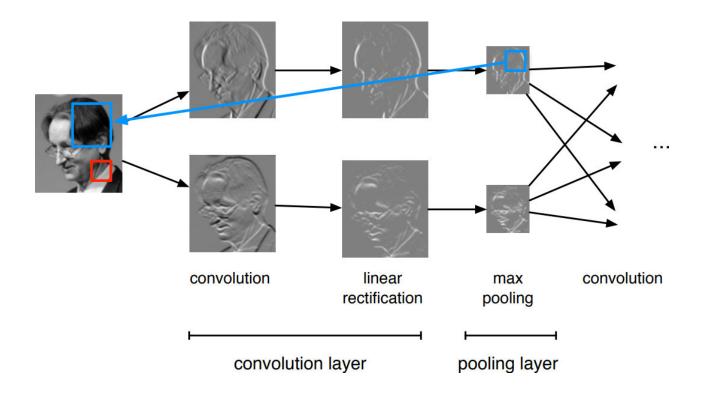


卷积神经元网络

CNN: Convolutional Neural Network

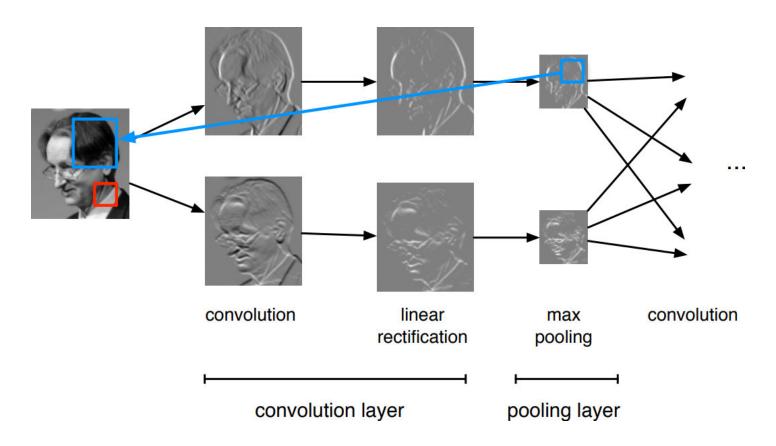
卷积神经元网络

- 一种特别的多层前向神经元网络
- 起源: 手写体识别
- 常用于图像视觉应用、文本处理



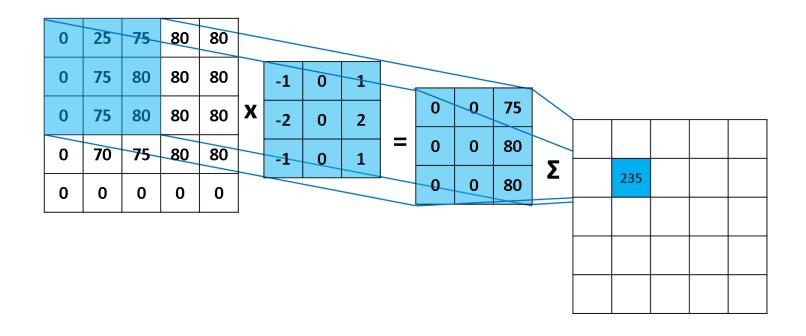
组成

- 卷积层
 - 卷积 + 非线性激活函数(如ReLU)
- 池化层



复习: 卷积操作

二维卷积,对应位置相乘,然后相加



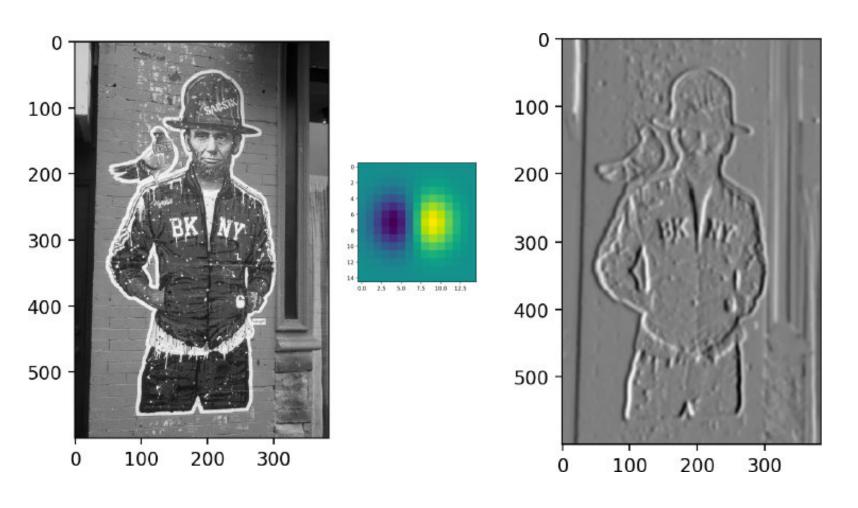
复习: 图像卷积

滤波器在图片上滑动, 进行卷积操作

7	2	3	3	8							Ĭ		
4	5	3	8	4		1	0	-1		6			
3	3	2	8	4	*	1	0	-1	=				
2	8	7	2	7		1	0	-1					
5	4	4	5	4		7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6							

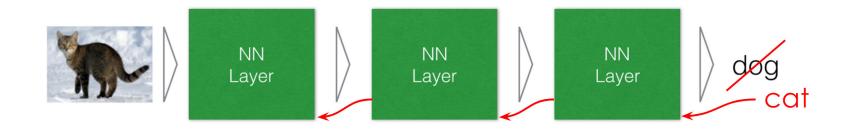
复习: 图像卷积效果

选择合适卷积核(滤波器),卷积计算图像像素梯度



深度卷积神经元网络

- 将原始数据直接送入多层神经元网络进行学习
- 多次卷积池化
- 出现错误,一路调整卷积核



Supervised Learning

池化

采样降低数据量

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

最大池化: Max Pooling

LeNet

- 手写体识别
- 1988年, LeCun

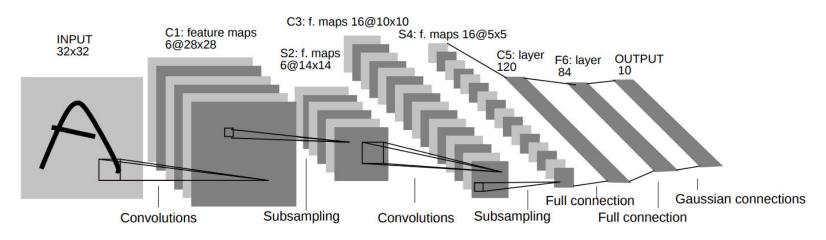
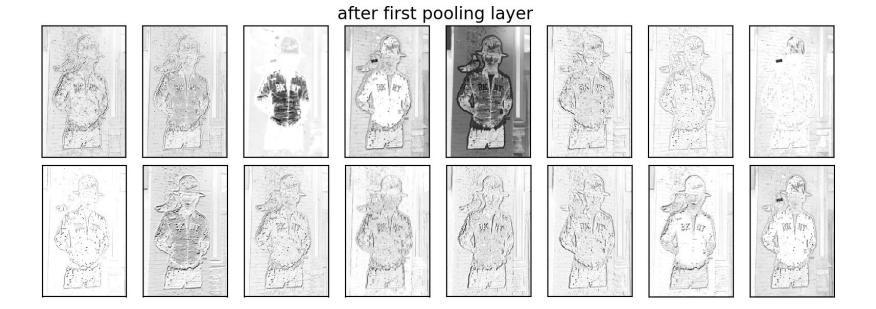


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

图像处理效果

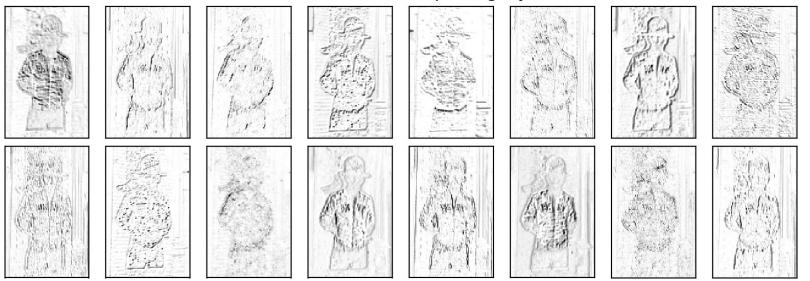
经过第一层卷积和池化



图像处理效果

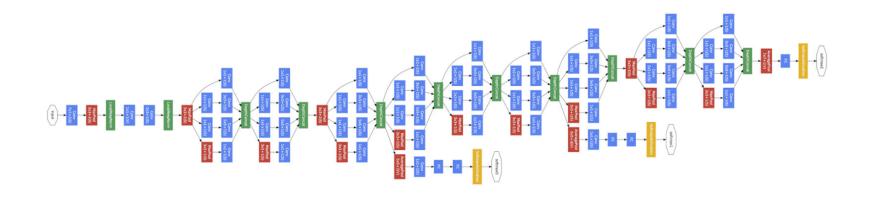
经过第二层卷积和池化

after second pooling layer



深度CNN

实际应用的模型层次非常多



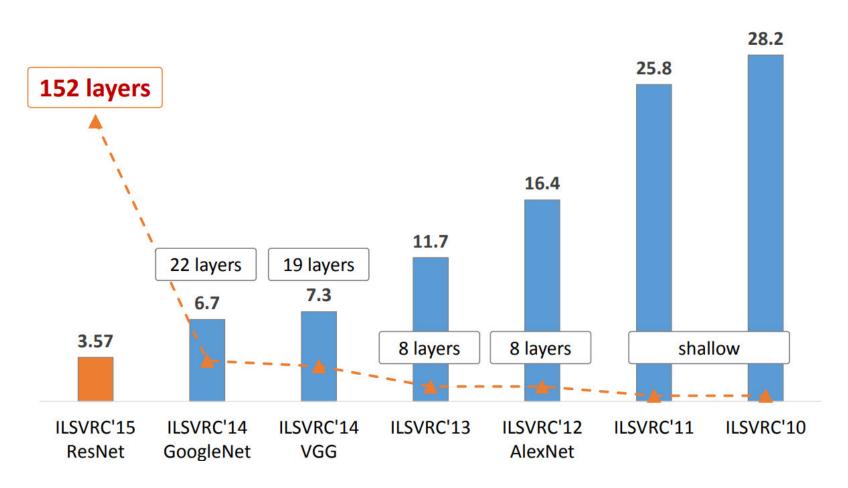
GoogleNet

GPU

- 几千万像素、上千万参数需要计算、调整
- 利用GPU的数千计算单元并行计算

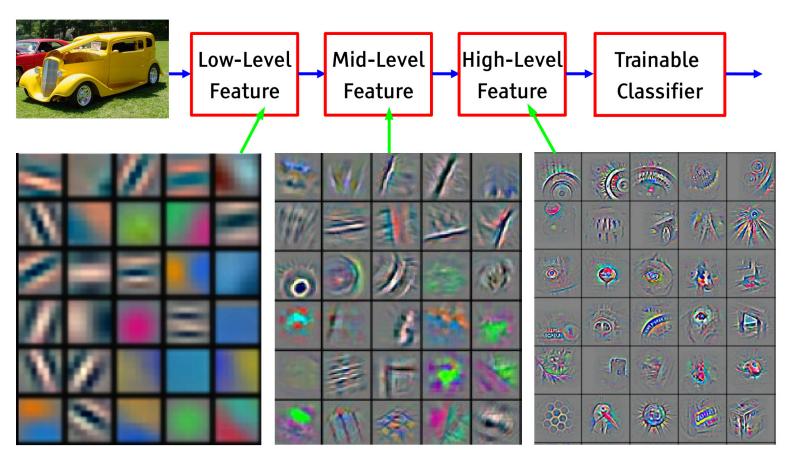
深度带来性能极大改善

ImageNet目标识别图像数据集



对各层卷积核的理解

• 底层提取简单特征,高层提取复杂特征



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNN演示

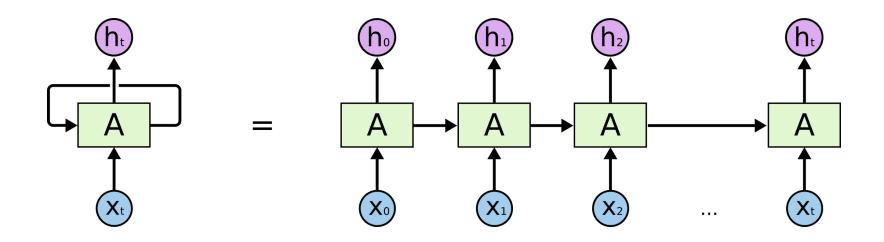
- Andrej Karpathy ConvNetJS
- https://cs.stanford.edu/people/karpathy/convnetjs/demo /mnist.html
- 在浏览器里训练CNN,实验MNIST手写体识别任务

循环神经元网络

RNN: Recurrent Neural Network

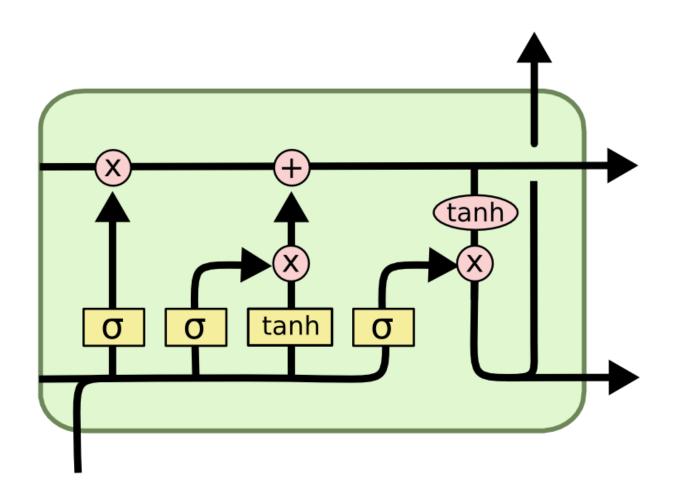
循环神经元网络

- "记忆单元"
- 适合处理时间序列数据、NLP任务
- 序列输入



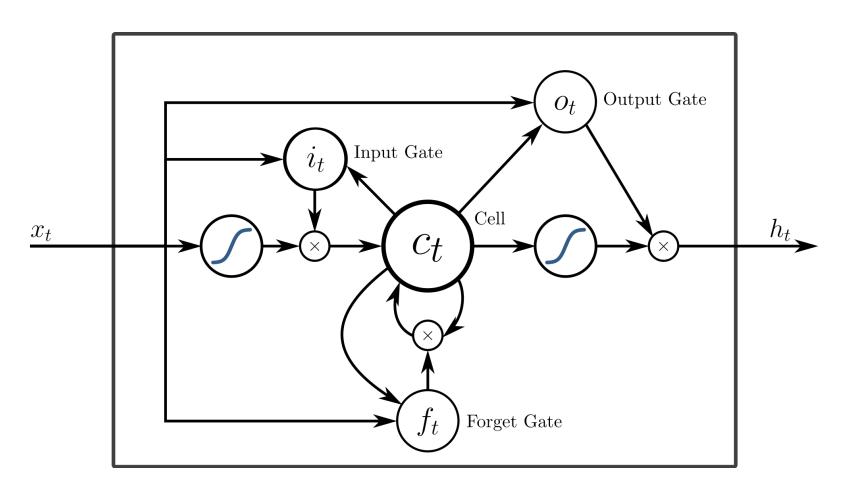
LSTM

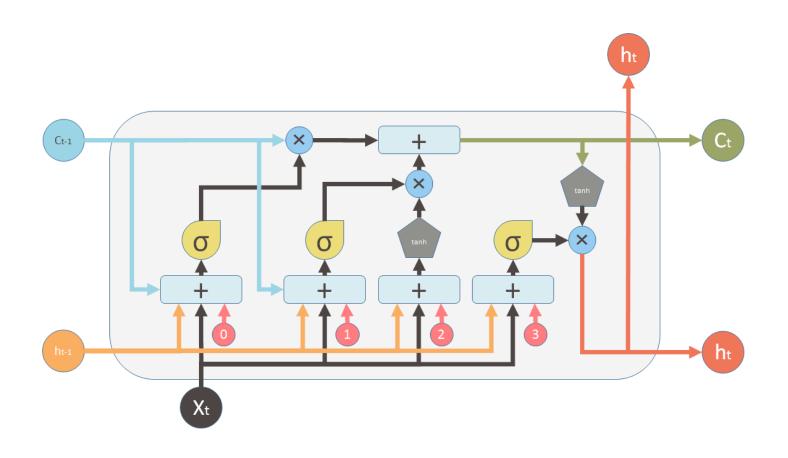
长短期记忆单元: Long short-term memory

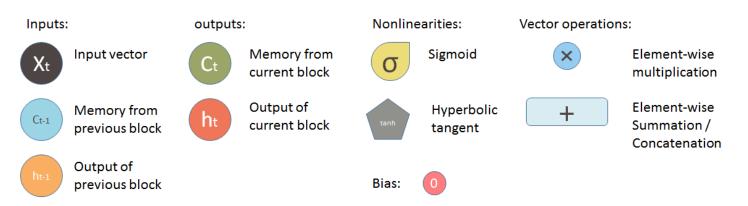


LSTM

- 人的大脑会遗忘
- 输入门,输出门,遗忘门

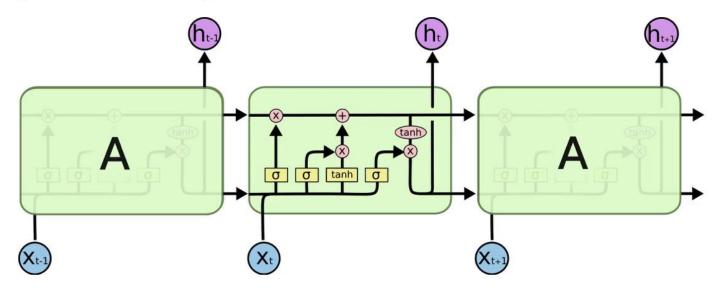




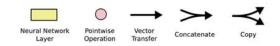


基于LSTM的RNN

Long-Short Term Memory module: LSTM



long-short term memory modules used in an RNN



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN的广泛应用

- 1. 语音识别
- 2. 机器翻译
- 3. 文本生成
- 4. 推荐系统
- 5. 时间序列预测

小结: 深度学习模型三种结构

- 1. 前向神经元网络(FFN)
- 2. 卷积神经元网络(CNN)
- 3. 循环神经元网络 (RNN)

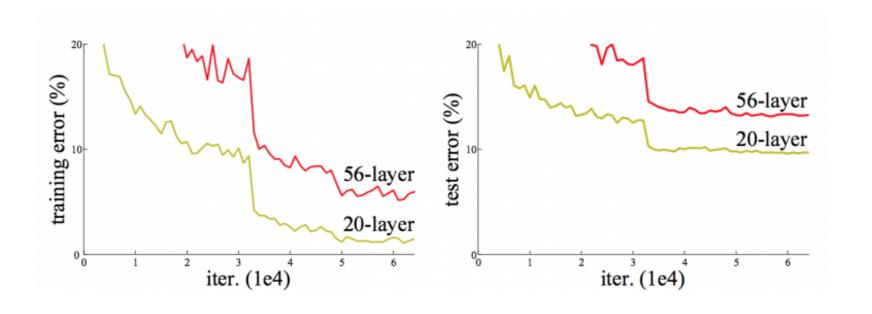
进展

进展

- 有许多不同类型的神经网络
- 每种神经网络都可用于解决特定的AI问题
- 这个领域正在迅速发展
 - Ian Goodfellow在2014年发明了GAN
 - Capsule network

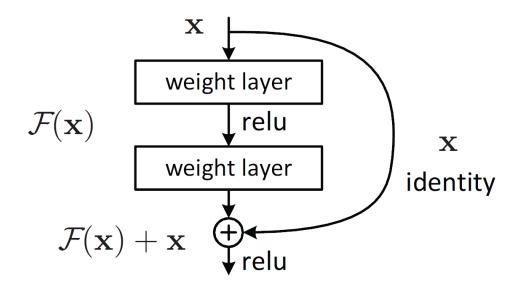
残差网络

一般的深度神经元网络,超过一定的层数后,层数越多,越难优化,性能反而变差



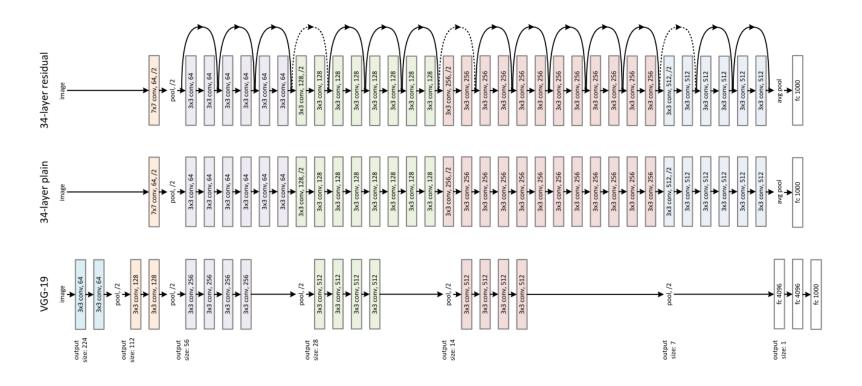
CIFA-10数据集

- 残差网络
- 加入直连链路



Residual Network

支持更深的网络, 获得更好的性能



Attention

注意力机制

Attention

- 人的注意力不是平均的
- 给不同元素不同注意力,能够改进性能

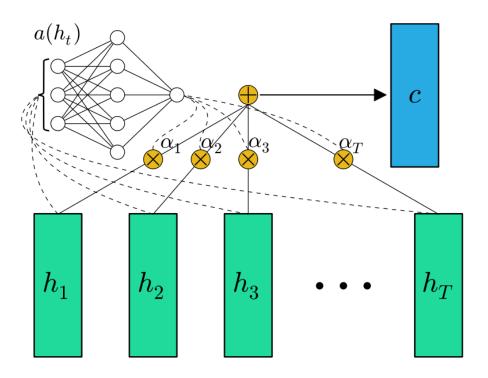
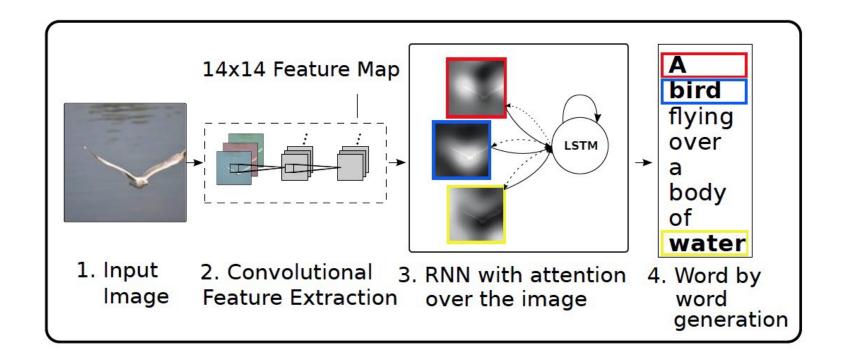


Figure 1: Schematic of our proposed "feed-forward" attention mechanism (cf. (Cho, 2015) Figure 1). Vectors in the hidden state sequence h_t are fed into the learnable function $a(h_t)$ to produce a probability vector α . The vector c is computed as a weighted average of h_t , with weighting given by α .

Attention在图像理解中的应用

生成图像的文字描述



Attention在图像理解中的应用

将文字和图像中的目标匹配

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Transformer

避免RNN结构,利用Attention

Transformer

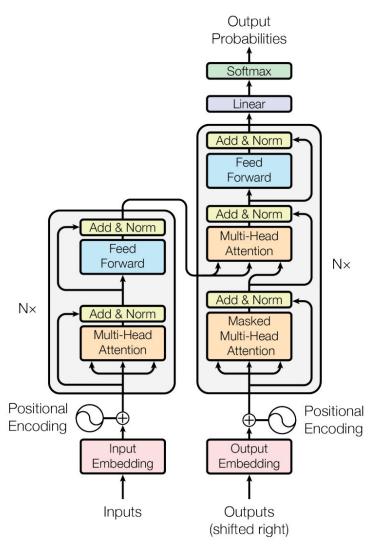


Figure 1: The Transformer - model architecture.

模型性能

Model Performance

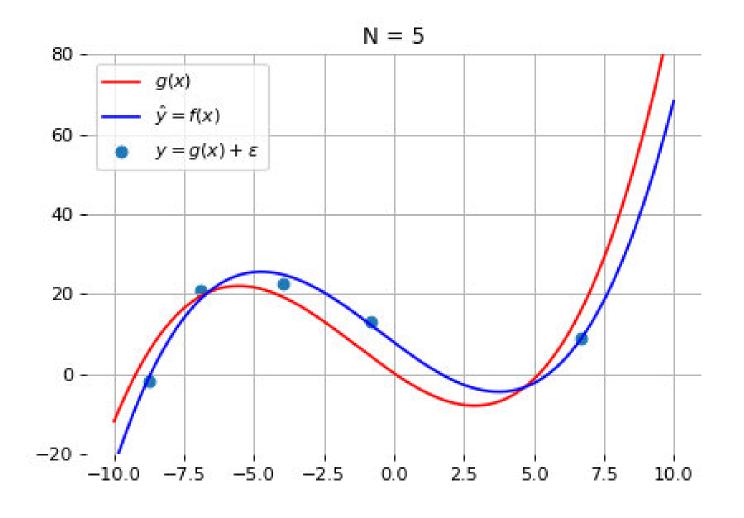
模型性能

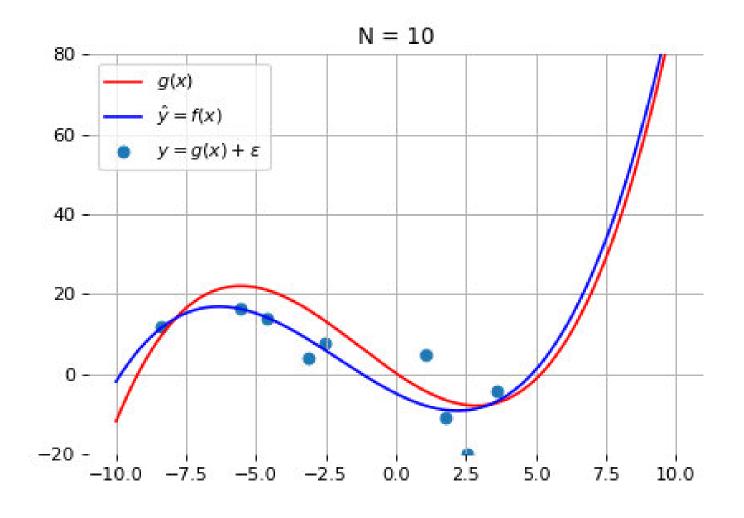
- 数据
- 模型
- 训练方法
- 优化
- 测试调优

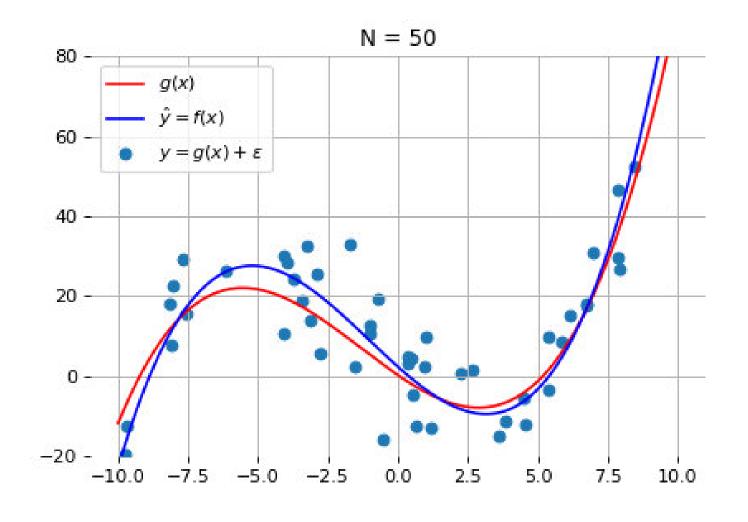
1)数据

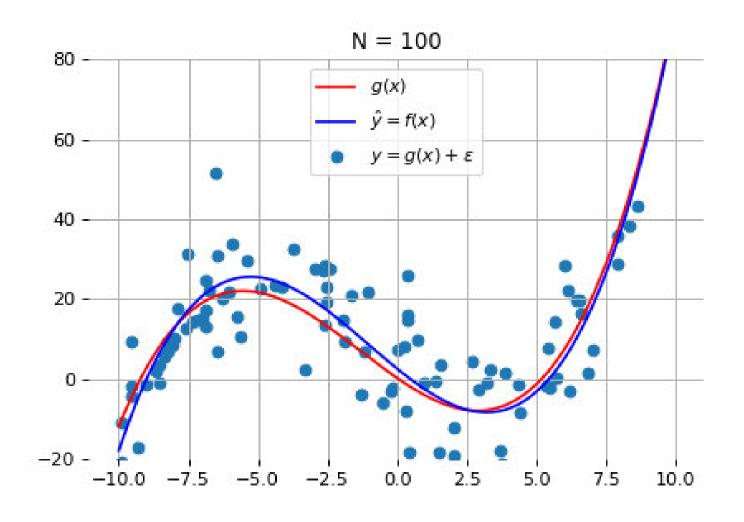
好的数据是成功的关键

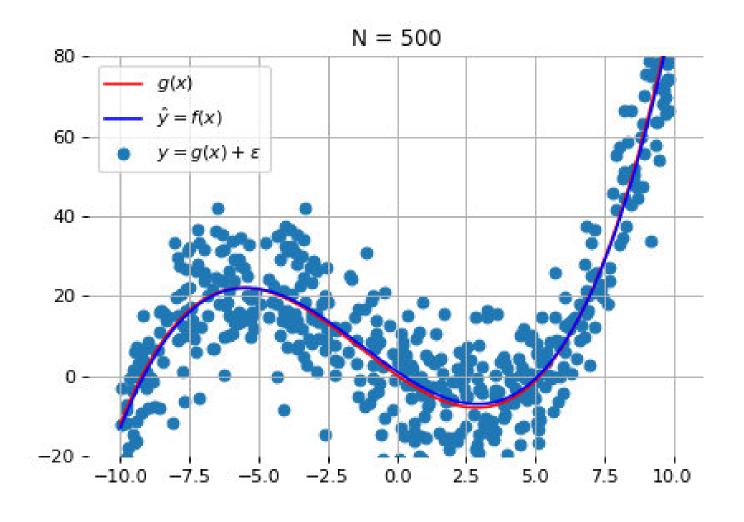
数据量少,模型误差大

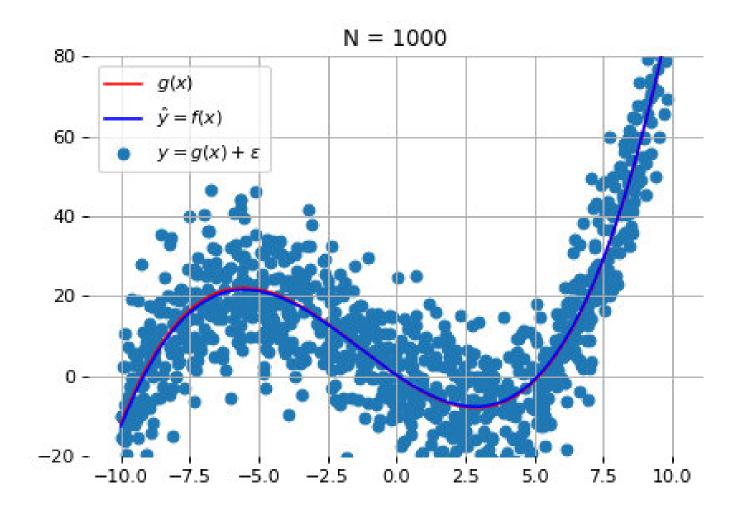










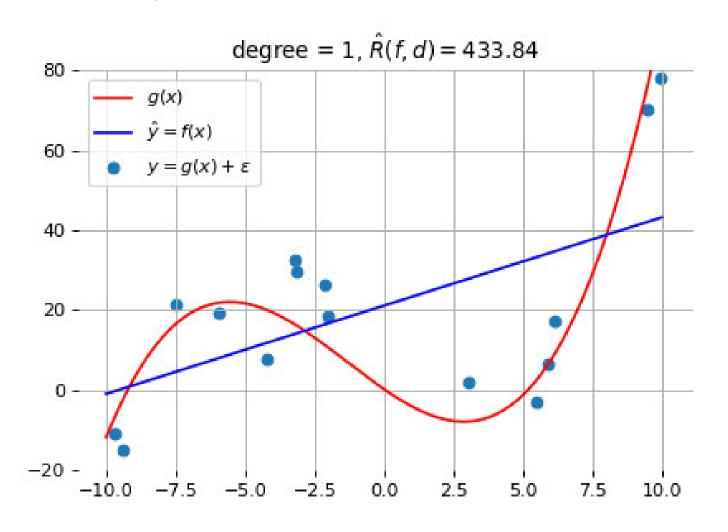


2) 模型

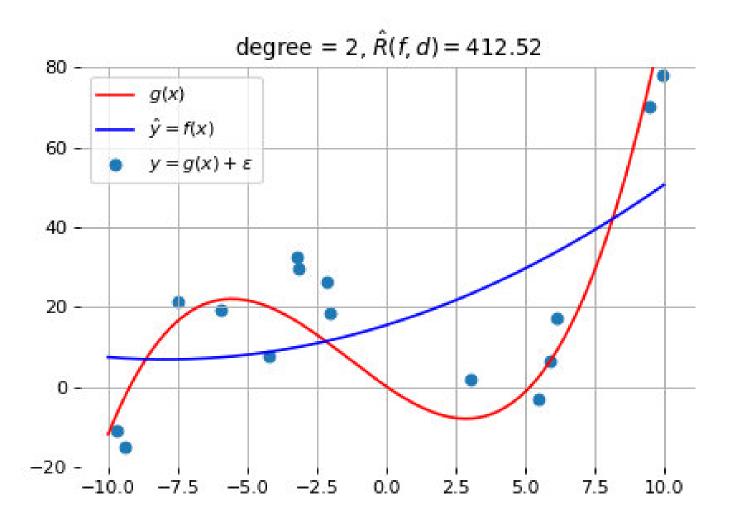
模型选择非常重要

模型能力

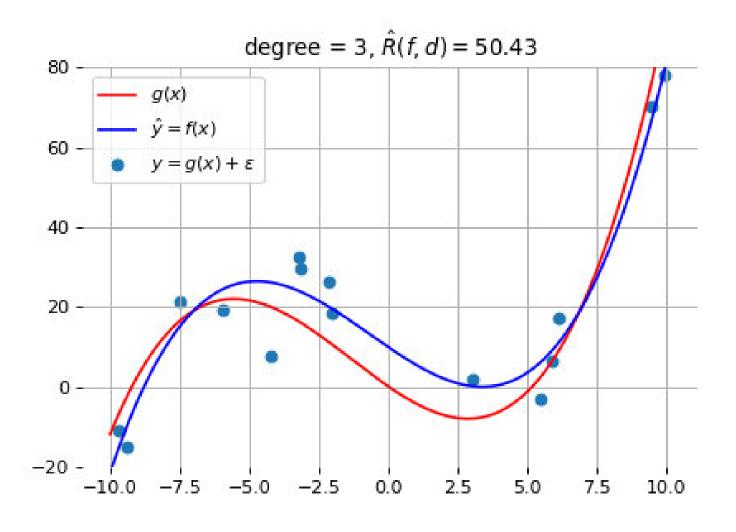
模型能力不够, 欠拟合



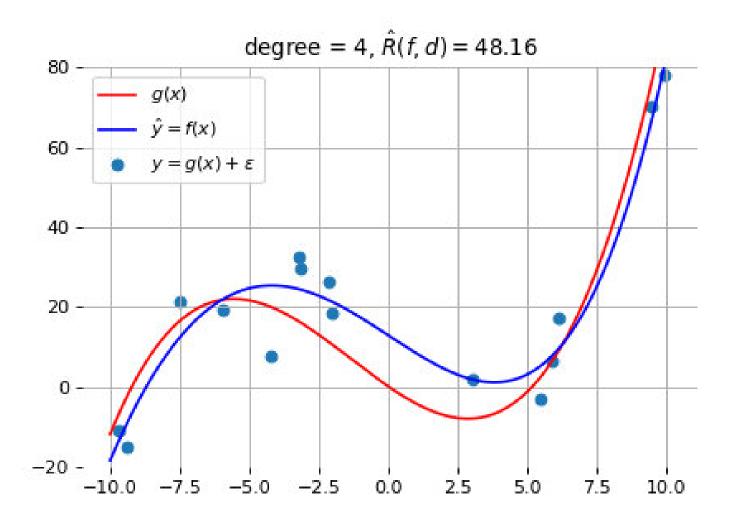
模型能力不够, 欠拟合



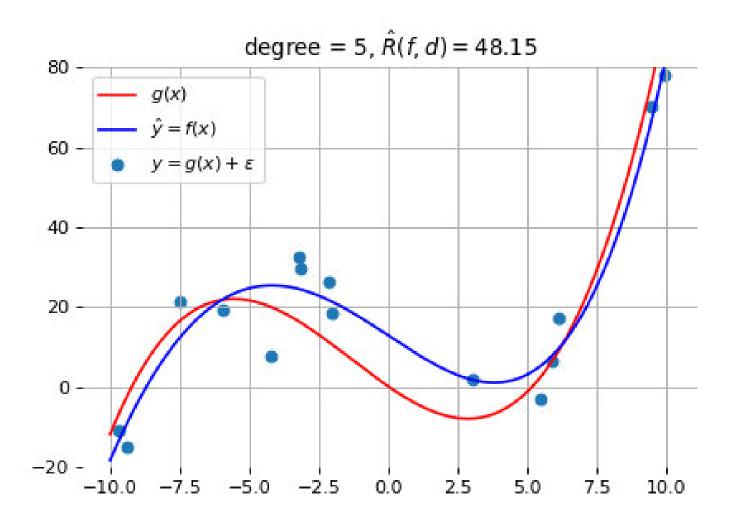
模型能力适中



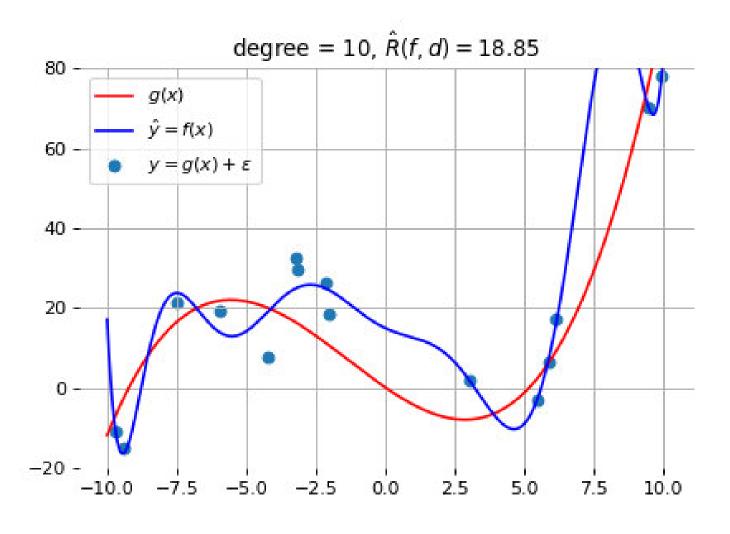
模型能力适中



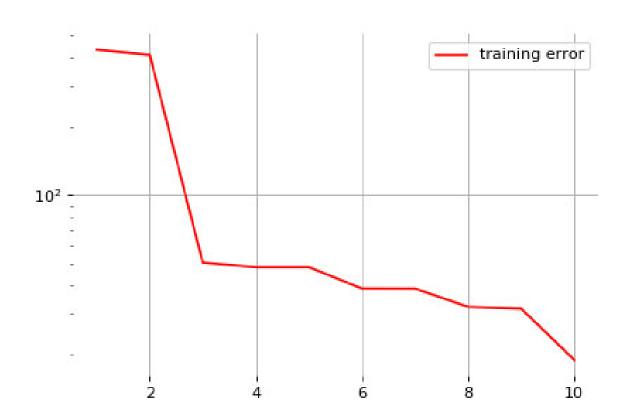
模型能力适中



模型能力太强,过拟合



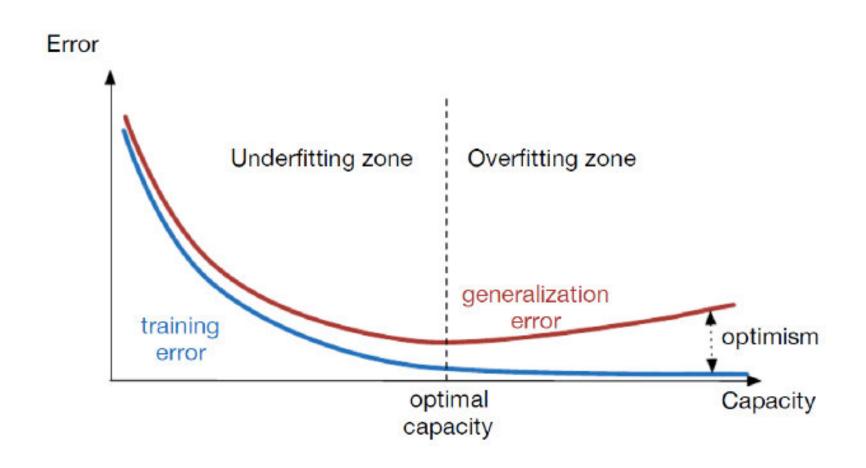
- 训练集上,模型错误随模型能力增长一直下降
- 但最后的下降,是过拟合了



过拟合

• 过拟合导致模型在测试集上错误上升

选择合适的模型非常重要



模型选择

- 深度神经网络不是唯一的机器学习算法
- 完全可以基于干净的数据集、更简单的算法(如线性回归) 来解决问题
- 记住奥卡姆剃刀准则

奥卡姆剃刀准则

简约至上

"The explanation requiring the fewest assumptions is most likely to be correct"

"解释能力相同情况下,假设越少越好"

奥卡姆剃刀

- Occam's Razor
- 14世纪逻辑学家,奥卡姆的威廉(William of Occam)提出
- "切勿浪费较多东西,去做'用较少的东西,同样可以做好的事情'

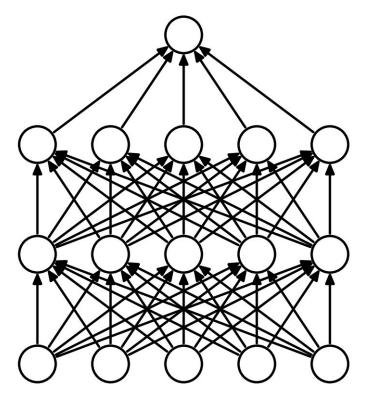
奥卡姆剃刀

- 关于同一个问题有许多种理论,每一种都能作出同样准确的 预言,那么挑选其中使用假定最少的
- 尽管越复杂的方法通常能做出越好的预言,但是在不考虑预言能力(即结果大致相同)的情况下,假设越少越好
- 在结果大致相同的情况下,模型越简单越好

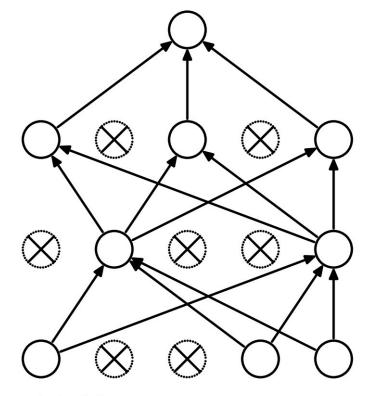
3) 训练方法

Dropout

- 每轮优化中,随机选择部分神经元进行计算
- 防止某些神经元特别厉害,一股独大



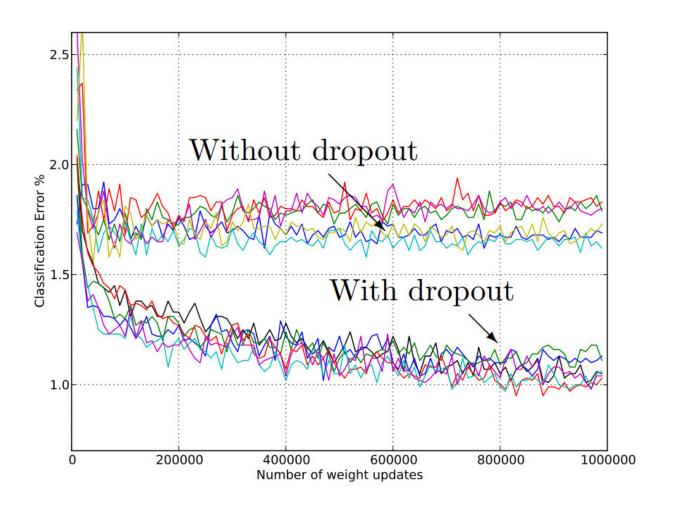
(a) Standard Neural Net



(b) After applying dropout.

Dropout

• 大家拾柴火焰高



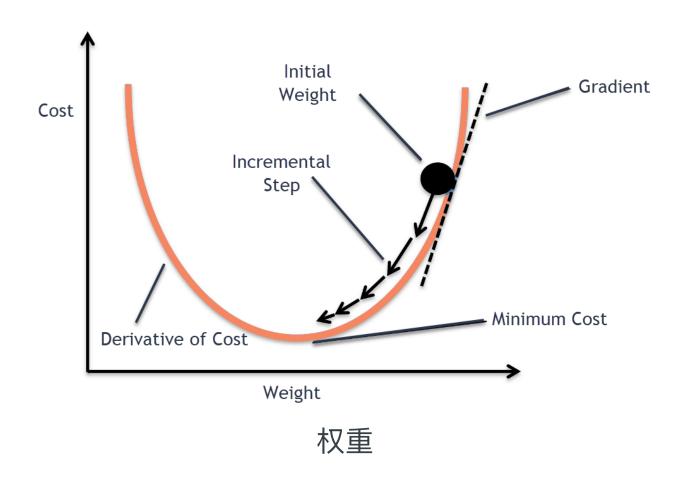
4) 优化

Optimization

寻找合适的 , 令模型错误最小

梯度下降寻找错误最小的模型权重

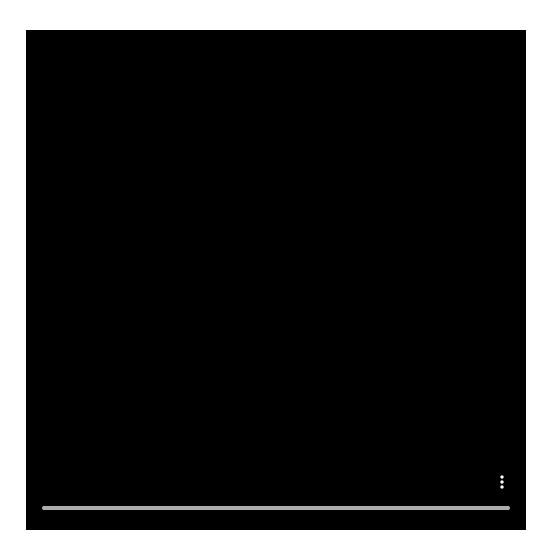
- 斜率为正,减少权重
- 斜率为负,增加权重



梯度下降过程

梯度下降过程

自适应步长选择



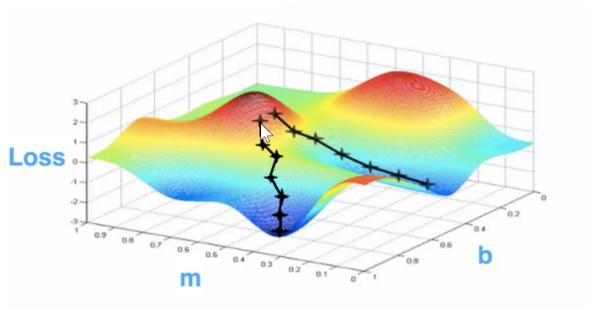
5) 调参

参数影响模型性能

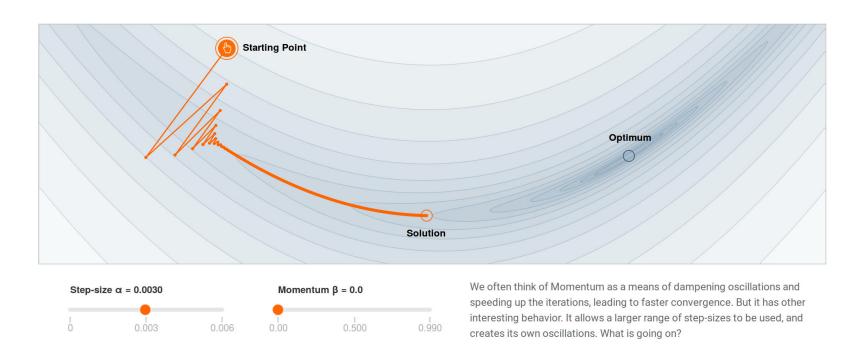
高维下情况复杂

Gradient Descent

f(x) = nonlinear function of x

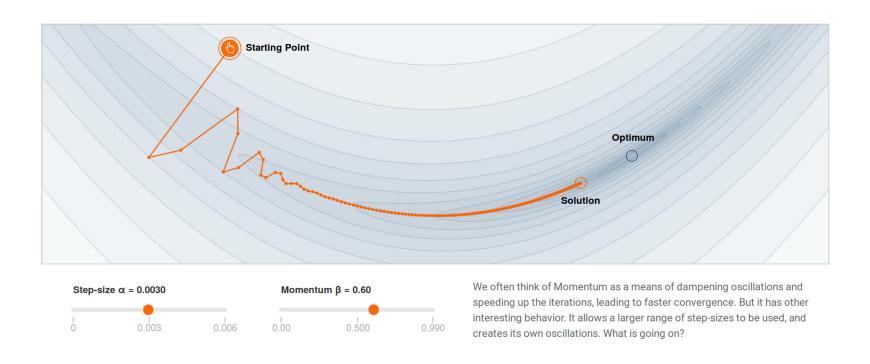


Momentum (沖量)



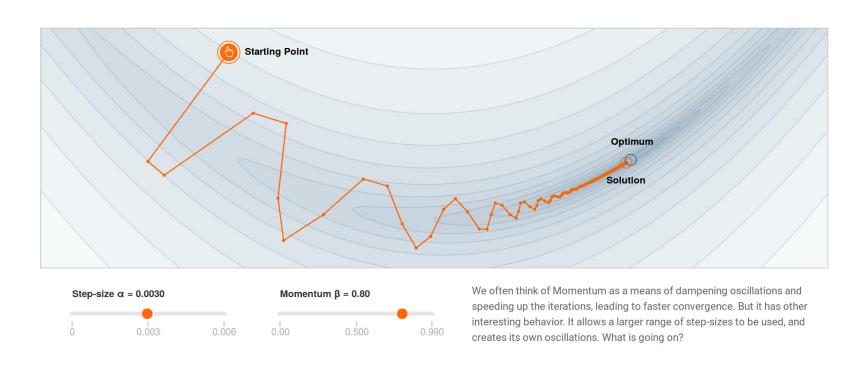
未达最优点

Momentum (沖量)



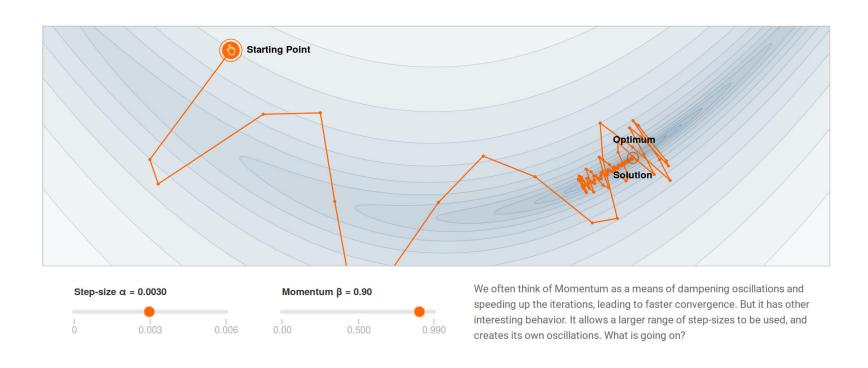
未达最优点

Momentum (沖量)



到达最优点

Momentum (冲量)



到达最优点, 但震荡

调参非常重要

- 1. 随机初始化模型
- 2. 用该模型进行预测
- 3. 将预测结果和真实结果比对: 如果错误, 调整模型
- 4. 重复第2-3步,直到性能无法提升
- 5. 在验证集上验证,选择最好的模型参数

复习题

- 什么是有监督学习? 什么是无监督学习?
- 图片分类是有监督学习, 还是无监督学习?
- 聚类是有监督学习, 还是无监督学习?
- 线性回归模型是直线还是S曲线?
- Logistic回归模型的是直线还是S曲线?
- 感知机由哪两部分组成?

复习题Ⅱ

- 三种最典型的深度神经元网络,分别是什么?
- 模型的能力不够, 会过拟合还是欠拟合?
- 模型的能力太强,会过拟合还是欠拟合?
- 什么是奥卡姆剃刀原则?