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Algorithms
Supervised

Unsupervised

Semi-supervised

Reinforcement learning
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Supervised

Labeled correct answers, e.g., picture categories
Learn a model to obtain correct answer
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Unsupervised

No labeled correct answer, e.g., only pictures
Use algorithm to learn the data pattern
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1) Supervised Learning
Known correct answer
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Supervised Learning
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Steps
1. Labeling

2. Training

3. Testing
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Preparing Data
1. Collecting data set

2. Labeling

Label the pictures: "Cat", "Dog"

3. Divide the data into three parts

Training set: training model

Validation set: selecting model parameters

Testing set: test model accuracy
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Training Model
1. Training: training the model

2. Validation: selecting model parameters

3. Testing: evaluate the model on the test set
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2) Unsupervised learning
Without labels, look for patterns on the data
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Unsupervised learning
Clustering

Outlier detection

Auto-encoder

Principal component analysis
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1) Clustering
Specify number of clusters: 3
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1) Clustering
After clustering, observe each cluster to get its meaning

The result might look like this:
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1) Clustering
The result may also be like this
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2) Outlier Detection
Find outliers, i.e., abnormal points
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3) Auto-Encoder
Encoding: get compressed representation of original
image

Decoding: restore original image based on compressed
representation
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3) Auto-Encoder
The result of compression is the code of the data
obtained by auto-encoding

Generally, deep neural network is used as encoder and
decoder
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4) PCA: Principal Component
Analysis

The data information is mainly on its principal component
vector
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4) PCA
Use PCA to represent 3D data in 2D

Little information is lost, achieving dimensionality
reduction
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4) PCA
Word representation using PCA
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3) Semi-Supervised Learning
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Semi-Supervised Learning
Labeling is time-consuming and labor-intensive

Uses a large amount of data without labeling

Combines a small amount of labeling data to improve
performance
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4) Reinforcement Learning
Learning based on the rewards received
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Reward-Based Learning
No labeled data set

There is a reward

Learning based on the rewards received

Goal: maximize reward
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Multi-Arm Bandit

Which machine to choose?
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Problems

"Utilization": Play the highest win rate machine ever
found

"Exploration": Play on machines that have not been fully
explored
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Key
Balance "utilization" & "exploration"
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UCB Algorithm
Upper Confidence Bounds: Upper bound of confidence
interval

Includes average win rate (mean) and exploration space
(standard deviation)

Balance "utilization" and "exploration"
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Reinforcement Learning
Make a lot of experiments

Don't be afraid to jump into the fire pit

Replay
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Reinforcement Learning
Keep trying

Get the "value" of each position

Or get the best action in every position
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MDP: Markov Decision Process
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Application
Robot

Game

Automatic control
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Challenge
Reward is delayed: examination results will not be known
until the end of the semester

Sparse reward feedback: only one final exam per
semester
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Summary
1. Supervised learning

Known correct answer (label)

2. Unsupervised learning

Discovering patterns from data

3. Semi-supervised learning

Leverage large amounts of data without labeling

4. Reinforcement Learning

Learn by trying

35 / 142



Model
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Linear Regression

Straight Line
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Logistic Regression
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Logistic Regression
Classification model

Relationship between exam passing probability and
study time

S Curve
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Perceptron
Model human brain neurons
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Neuron Model
Neurons (brain cells) are connected through synapses

The brain constantly creates, strengthens, and weakens
these connections
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Perceptron Model
Linear weighted sum of inputs

Neuron input: 

Connection weight: 

Sum: 

42 / 142



Perceptron Model
Nonlinear activation function
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Perceptron Model
Input linear weighting sum

Non-linear activation function 
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Perceptron Model
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Implementation
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Model Training Method
Learn from mistakes
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Brain Learning Process
Continuously create, strengthen, and weaken
connections between neurons based on experimental
results

i.e., adjust the weight of the connection: 
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Machine Learning Process
An error occurred, adjusting model parameters
backwards 
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Perceptron Learning Process
Find errors, adjust weight  to reduce errors
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Perceptron Learning Process
Find errors, adjust , adjust decision boundaries 
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Learning Process
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SVM
Support Vector Machines

Not only avoid mistakes, the farther the two sides are, the
better
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Kernel
Use a non-linear kernel function instead of a vector dot
product to support curve boundaries
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Deep Learning
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Machine Learning
First extract image features

Then learn based on these features
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Deep Learning
No specific feature extraction step

Send the raw data directly to the multilayer neural
network for learning

Error occurred, adjust the model parameters
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Typical Neural Network
Structures
FFN、CNN、RNN
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Forward Neural Network
FFN
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Forward Neural Network

Hidden and output layer units: perceptron
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Activation Function
ReLU: Rectified Linear Unit

Sigmoid

Tanh: Hyperboilic Tangent
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ReLU

: Rectified Linear Unit
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Sigmoid

: S曲线
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Tanh

: Hyperboilic Tangent
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Deep Neural Network

Multiple hidden layers
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Benefits of Depth
Generally, the deeper, the stronger the model 
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FNN Experiments
Browser-based TensorFlow experiments

http://playground.tensorflow.org
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CNN
Convolutional Neural Network
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2D Convolution
Multiply corresponding positions, then add
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Image Convolution
The filter slides on the picture for convolution.
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Convolution Pixel Gradient
Select appropriate convolution kernel (filter) to calculate the
pixel gradient of the image
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Convolutional Neural Network
A special multilayer forward neuron network

Origin: Handwriting Recognition

Commonly used in image and vision applications, text
processing
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Architecture
Convolutional layer

Convolution + non-linear activation function (such as ReLU)

Pooling layer
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Pooling Layer
Sampling reduces the amount of data

Max Pooling
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Deep CNN
Send the raw data directly to the multilayer neural
network for learning

Multiple convolution and pooling layers

An error occurred, adjusting the convolution kernel all
the way
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LeNet
Handwriting recognition

1988, LeCun
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Image Processing Result
After the first layer of convolution and pooling
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Image Processing Result
After the second layer of convolution and pooling
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Deep CNN
Many layers

Tens of millions of pixels

Tens of millions of parameters need to be calculated and
adjusted

GoogleNet
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GPU
Parallel computing with thousands of computing units in
GPU

80 / 142



Great Performance Gain
ImageNet object recognition image dataset
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Understanding of CNN
Extract simple features at the bottom and complex
features at the high level
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CNN Demo
Andrej Karpathy ConvNetJS

https://cs.stanford.edu/people/karpathy/convnetjs/demo
/mnist.html

Train CNN in browser, experiment with MNIST
handwriting recognition task
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RNN
Recurrent Neural Network
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RNN
“Memory unit”

Suitable for processing time series data and natural
language processing (NLP) tasks

Sequence input
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LSTM
Long short-term memory unit
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LSTM
The human brain forgets

Input gate, output gate, forget gate
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LSTM-based RNN
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Wide Application of RNN
1. Speech recognition

2. Machine translation

3. Text generation

4. Recommendation system

5. Time series prediction
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Summary: Deep Learning Models

1. Forward neural network（FFN)

2. Convolutional neural network（CNN)

3. Recurrent neuron network（RNN)
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Progress
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Overview
There are many different types of neural networks

Each neural network can be used to solve specific AI
problems

This field is growing rapidly
Ian Goodfellow invented GAN in 2014

Capsule network
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ResNet
Residual network

94 / 142



ResNet
In general, for deep neural networks, after the number of
layers exceeds a certain value, the more layers, the more
difficult it is to optimize, and the performance becomes
worse.

CIFA-10 dataset
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ResNet
Residual network

Add direct link

Residual Network
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ResNet
Support deeper networks for better performance
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Attention
Attention mechanism
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Attention
Human's attention is not average

Give different elements different attention to improve
performance
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Application of Attention in Image
Understanding
Generate a text description of the image
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Application of Attention in Image
Understanding
Match objects in text and images
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Transformer
Avoid RNN structure and use Attention

102 / 142



Transformer
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Performance
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Performance
Data

Model

Training method

Optimization

Parameter tuning
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1) Data
Good data is the key to success
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Small Amount of Data
Large errors
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Data Volume Grows
Model errors decrease
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Data Volume Grows
Model errors decrease
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Data Volume Grows
Model errors decrease
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Data Volume Grows
Model errors decrease
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Data Volume Grows
Model errors decrease
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2) Model
Model selection is very important
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Underfitting
Too simple model, low capacity, underfitting
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Underfitting
Too simple model, low capacity, underfitting
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Model Capabilities
Moderate model

116 / 142



Model Capabilities
Moderate model
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Model Capabilities
Moderate model
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Overfitting
Too complex model, capability is too high
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Overfitting
On the training set, model errors continue to decline as
model capability increases

But the final drop is overfitting
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Overfitting
Overfitting causes model errors to rise incorrectly on test
set
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Model Capabilities
Choosing the right model is very important
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Model Selection
Deep neural network is not the only machine learning
algorithm

You can solve the problem based on a clean data set and
simpler algorithms (such as linear regression).

Occam's Razor Guidelines
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Occam's Razor Guidelines
Simplicity first

“The explanation requiring the fewest assumptions is
most likely to be correct”
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Occam's Razor
Proposed by 14th-century logician, William of Occam

"When presented with competing hypotheses that make
the same predictions, one should select the solution with
the fewest assumptions"
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3) Training Method
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Dropout
In each round of optimization, some neurons are
randomly selected and added to the calculation

Prevent some neurons from being particularly powerful
and dominate
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Dropout
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4) Optimization
Find the right  to minimize model errors
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Gradient Descent
Find model parameter  with the smallest error

Positive slope, reduce 

Negative slope, increase 
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Gradient Descent
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Gradient Descent
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Adaptive Step Size Selection
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5) Parameter Tuning
Parameters affect model performance
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Situation is Complex in High
Dimensions
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Adaptive Step Size Selection

Miss the best
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Adaptive Step Size Selection

Miss the best
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Adaptive Step Size Selection

Reach the best
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Adaptive Step Size Selection

Reached the best, but oscillate
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Parameter Tuning
1. Randomly initialize model

2. Use this model to make predictions

3. Compare predictions with real results: if wrong, adjust
model

4. Repeat steps 2-3 until performance cannot be improved

5. Validate on the validation set and choose the best model
parameters
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Quiz I
What is supervised learning? What is unsupervised
learning?

Is image classification supervised or unsupervised?

Is clustering supervised or unsupervised?

Is the linear regression model a straight line or an S-
curve?

Is the logistic regression model a straight line or an S-
curve?

What are the two parts of a perceptron?
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Quiz II
What are the three most typical types of deep neural
networks?

The model is not capable enough. Will it overfit or
underfit?

The model is too powerful. Will it overfit or underfit?

What is Occam's Razor Principle?
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