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Algorithms

e Supervised
e Unsupervised
e Semi-supervised

e Reinforcement learning
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Supervised

Supervised Learning
(Classification Algorithm)

Unsupervised Learning
(Clustering Algorithm)
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Labeled correct answers, e.g., picture categories
Learn a model to obtain correct answer
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Unsupervised

Supervised Learning
(Classification Algorithm)

Unsupervised Learning
(Clustering Algorithm)
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Western Digital.

No labeled correct answer, e.g., only pictures
Use algorithm to learn the data pattern
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1) Supervised Learning

Known correct answer
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Supervised Learning

Regression

What is the temperature going to

Y777, be tomorrow?
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Steps

1. Labeling
2. Training
3. Testing
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Preparing Data

1. Collecting data set
2. Labeling
o Label the pictures: "Cat", "Dog"
3. Divide the data into three parts
o Training set: training model
o Validation set: selecting model parameters

o Testing set: test model accuracy
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Training Model

1. Training: training the model
2. Validation: selecting model parameters

3. Testing: evaluate the model on the test set

Write code ———> Train —— Validation —» Test ——> Paper

~—
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2) Unsupervised learning

Without labels, look for patterns on the data
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Unsupervised learning

e Clustering
e Qutlier detection
e Auto-encoder

e Principal component analysis
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1) Clustering

Specity number of clusters: 3

Data
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Final Results
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1) Clustering

e After clustering, observe each cluster to get its meaning

e The result might look like this:
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1) Clustering

e The result may also be like this

Unsupervised
Learning
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2) Outlier Detection

Find outliers, i.e., abnormal points

Qutlier Detection
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3) Auto-Encoder

e Encoding: get compressed representation of original

Image

e Decoding: restore original image based on compressed

representation

-

Original
input

Encoder

-

Compressed

Decoder

al

Reconstructed

representation

input



3) Auto-Encoder

e The result of compression is the code of the data
obtained by auto-encoding

e Generally, deep neural network is used as encoder and
decoder
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4) PCA: Principal Component
Analysis

e The data information is mainly on its principal component
vector
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o
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4) PCA

e Use PCA to represent 3D data in 2D

e Little information is lost, achieving dimensionality
reduction

original data space

PCA component space
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4) PCA

Word representation using PCA

Country and Capital Vectors Projected by PCA
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3) Semi-Supervised Learning



Semi-Supervised Learning

e Labeling istime-consuming and labor-intensive
e Uses a large amount of data without labeling

e Combines a small amount of labeling data to improve

performance
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4) Reinforcement Learning

Learning based on the rewards received
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Reward-Based Learning

e No labeled data set
e There is a reward
e |Learning based on the rewards received

e Goal: maximize reward
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Multi-Arm Bandit

bibblio

Which machine to choose?
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Problems

Bandit| |Bandit| |Bandit] |Bandit

30%

current current current current
success success success success
rate rate rate rate

}

Next
choice?

e "Utilization": Play the highest win rate machine ever
found

e "Exploration": Play on machines that have not been fully
explored



Key

Balance "utilization" & "exploration”
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UCB Algorithm

e Upper Confidence Bounds: Upper bound of confidence

interval

e Includes average win rate (mean) and exploration space
(standard deviation)

e Balance "utilization" and "exploration”

p(Q)

Q(ay)

Q(a,)

Q(a,)

wa) pay)

p(a;)

lco(a,)l

co(a,) !

co(a,)
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Reinforcement Learning

e Make a lot of experiments
e Don't be afraid to jump into the fire pit

e Replay
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Reinforcement Learning

e Keep trying

e Getthe "value" of each position

e Or getthe best action in every position

Agent

—

—

Actlon a,

ﬁ'lb

Reward r,

State s,

- -
'LI

Environment
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MDP: Markov Decision Process

An MDP is defined by:
= Set of states §

= Set of actions 4 ——
~| Agent
= Transition function P(s’|s, a)
state freward action
= Reward function R(s, a, s’) 5 ! o
:4 rH-i [
= Startstate s, e | Environment ]*"'

= Discount factor y

= Horizon H
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Application

e Robot
e Game

e Automatic control

33/142



Challenge

e Reward is delayed: examination results will not be known
until the end of the semester

e Sparse reward feedback: only one final exam per

semester
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Summary

1. Supervised learning
o Known correct answer (label)
2. Unsupervised learning
o Discovering patterns from data
3. Semi-supervised learning
o Leverage large amounts of data without labeling
4. Reinforcement Learning

o Learn by trying
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Model
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Linear Regression

-20 =—10 10 20 30 40 50

Straight Line

60
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Logistic Regression
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Logistic Regression

e Classification model

e Relationship between exam passing probability and
study time

Probability of passing exam versus hours of studying

Frobability of passing exam

Hours studying

S Curve
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Perceptron

Model human brain neurons




Neuron Model

e Neurons (brain cells) are connected through synapses

e The brain constantly creates, strengthens, and weakens
these connections

SENSORY ASSOCIATION RESPONSE
UNITS UNITS UKITS
(8-UNITS) (A-UNITS) (R-UNITS)

e
''''''

- I
l i o
METWORK OF
i "MANY-TO-ONE" CONNECTIOKS.
l RARDGH® CORNECTIONS FEED-BACK LOOPS NOT SHOWN

Figure | ORGANIZATION OF THE MARK | PERCEPTRON
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Perceptron Model

e Linear weighted sum of inputs
o Neuron input:
o Connection weight:

o Sum:




Perceptron Model

e Nonlinear activation function
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Perceptron Model

e Input linear weighting sum

e Non-linear activation function

TP ¢
®_,dot_,add_,
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Perceptron Model
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Implementation




Model Training Method

Learn from mistakes
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Brain Learning Process

e Continuously create, strengthen, and weaken

connections between neurons based on experimental
results

e i.e., adjust the weight of the connection:




Machine Learning Process

e An error occurred, adjusting model parameters
backwards

Feature
Extractions

Classification

Data Supervised
iIndependent Learning
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Perceptron Learning Process

to reduce errors

e Find errors, adjust weight
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Perceptron Learning Process

e Find errors, adjust , adjust decision boundaries

=1.0 =05 1.0 0.5 1.0 1.3 2.0 2.5 3.0 3.5
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Learning Process

training set
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SVM

e Support Vector Machines

e Not only avoid mistakes, the farther the two sides are, the
better
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Kernel

Use a non-linear kernel function instead of a vector dot
product to support curve boundaries




Deep Learning
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Machine Learning

e First extract image features

e Then learn based on these features

Feature

Extractions Classification

Data Supervised
independent Learning
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Deep Learning

e No specific feature extraction step

e Send the raw data directly to the multilayer neural
network for learning

e Error occurred, adjust the model parameters

i
™ BN ) IS ) o6
- , ; (?//,— 4?’/,/’— (:C]T

Supervised
Learning
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Typical Neural Network
Structures

FEN. CNN. RNN
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Forward Neural Network

FFN
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Forward Neural Network

Input Hidden Output
layer layer layer

Hidden and output layer units: perceptron
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Activation Function

e RelU: Rectified Linear Unit
e Sigmoid
e Tanh: Hyperboilic Tangent
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RelU

10 -

|
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: Rectified Linear Unit
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igmoid
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Tanh

tanh x
10F -
05k
| | | | I
~4 =3 I 2 4
S
— -10F

: Hyperboilic Tangent
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Deep Neural Network

hidden hidden

output

input

s

Multiple hidden layers

O



Benefits of Depth

Generally, the deeper, the stronger the model

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.



FNN Experiments

e Browser-based TensorFlow experiments

http://playground.tensorflow.org

Epoch Learning rate Activation Regularization Regularization rate Problem type
o ° > 000,333 0.03 - RelU - L2 - 0001 - Classification
DATA FEATURES + — 6 HIDDEN LAYERS QUTPUT
Which dataset do Which properties Test loss 0.009
you want to use? ;:le(;??#?wam to aY = Y= m A LY = oY = Y= Training loss 0.003
7 neurons 7 neurons 7 neurons
X

®

Ratio of training to
test data: 50%

—_— . X2
Noise: 0 )
o X,
Batch size: 10 3
P XX, ‘
REGENERATE sin(X,)
] Colors shows
v Y & A data, neuron and h— | —
e ( D‘-ﬂ—‘* weight values. & 1
=

The outputs are
mixed with varying
weights, shown
by the thickness

~f tha lnac

[ Showtestdata  [] Discretize output

This Is the output
from one neuron
Hover to see it

larnar
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CNN

Convolutional Neural Network
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2D Convolution

Multiply corresponding positions, then add

0 | 2575180 |80
0 |75 80|80 |80
0 |75 80|80 |80
\ \
0 | 70 T75-|-80 | 80
80 | 80
o|lo|lo|o|o

| ™/
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Image Convolution

The filter slides on the picture for convolution.

o 3 |8

SRS R84 1 |0 |- 6
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Convolution Pixel Gradient

Select appropriate convolution kernel (filter) to calculate the
pixel gradient of the image

0
100
200

300 300

400 400

500 500

0 100 200 300
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Convolutional Neural Network

e A special multilayer forward neuron network
e Origin: Handwriting Recognition

e Commonly used in image and vision applications, text
processing
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Architecture

e Convolutional layer

o Convolution + non-linear activation function (such as RelLU)

e Pooling layer

convolution linear max convolution
rectification pooling
convolution layer pooling layer
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Pooling Layer

Sampling reduces the amount of data

Max Pooling

12 [ 20 | 30 | O

8 1121 2 1 0 | 9% 2MaxPool |20 30
>

34 | 70 | 37 | 4 112 | 37

112 (100 | 25 | 12
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Deep CNN

e Send the raw data directly to the multilayer neural
network for learning

e Multiple convolution and pooling layers

e An error occurred, adjusting the convolution kernel all

the way

Supervised
Learning
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LeNet

e Handwriting recognition

e 1988, LeCun

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

i 6@26x28 . °
112 - layer :
6@14x14 I I— o0 F6: layer  QUTPUT

32x32
10

|
Full coml\ection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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Image Processing Result

After the first layer of convolution and pooling

after first pooling layer
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Image Processing Result

After the second layer of convolution and pooling

after second pooling layer

| gy o esmey | 1] LS TR A
3 -ﬂ:}_,"' ‘,' _:T.--?;j?‘- JEAE : ‘",I‘ -.\N -Ji""}fiif..'
' S T i

'..'I—'P- |'J I o - &5 |
& a‘p"; ofy A 7, 3 f S H‘ e érﬂ‘-"f‘ [

1#
1 I . ; "-.-,-. I B o @
{'-'I' vl .:’_'i-f""' lé-‘ﬂ"_":f R gt At ;. b {-.. ...-"i
1 ¢ o - i 1 5 | N
a i S B iR . Lioiw i

- : i g ; i |
.. o ."l- o a
) ; e T i ; e
anth fy A s, T
s [T SRS e i Rt f.?'
el i e Ao - ﬁﬁt# {1
\ .IT' i -*"'I.u_‘a')l 4 ‘le. E
iR P -"_'Jf |
LS ¥ | = o i ot
p | ok :

78/ 142



Deep CNN

e Many layers
e Tens of millions of pixels

e Tens of millions of parameters need to be calculated and
adjusted

GoogleNet

79 /142



GPU

e Parallel computing with thousands of computing units in
GPU
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Great Performance Gain

ImageNet object recognition image dataset

28.2

152 layers ’

A
\
\
‘ 22 layers 19 Iayers I
\ 6.7

3 57 I_ o I 8 layers ] ‘ 8 layers ‘ shallow

ILSVRC'15  ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

81/142



Understanding of CNN

e Extract simple features at the bottom and complex
features at the high level

Low-Level Mid-Level| |High-Level Trainable
—_ — —
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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CNN Demo

e Andrej Karpathy ConvNetJS

e https://cs.stanford.edu/people/karpathy/convnetjs/demo
/mnist.html

e Train CNN in browser, experiment with MNIST
handwriting recognition task

83/142


https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

RNN

Recurrent Neural Network
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RNN

e "Memory unit”

e Suitable for processing time series data and natural

language processing (NLP) tasks

e Sequence input
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LSTM

Long short-term memory unit




LSTM

e The human brain forgets

e Input gate, output gate, forget gate

Output Gate

Xt

Forget Gate




Inputs:

o
(o)
-

tanh

Input vector
Memory from
previous block

Output of
previous block

outputs:

Memory from
current block

Output of
current block

Nonlinearities:

@ Sigmoid

-

Bias: o

Hyperbolic
tangent

Vector operations:

®

0O

Element-wise
multiplication

Element-wise
Summation/
Concatenation
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LSTM-based RNN

Long-Short Term Memory module: LSTM

T A
i N\ r j y a8

—>—® @ > =

@b
A b A
[o] [&h] [o]

—p 5 -

\. J >\ J

Neural Network Pointwise Vector
Layer Operation Transfer

long-short term memory modules used in an RNN

Concatenate Copy

http://colah.github io/posts/2015-08-Understanding-LSTMs/  Eugenio Culurciello
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Wide Application of RNN

1. Speech recognition

2. Machine translation

3. Text generation

4. Recommendation system

5. Time series prediction
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Summary: Deep Learning Models

1. Forward neural network (FFN)
2. Convolutional neural network (CNN)

3. Recurrent neuron network (RNN)
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Progress
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Overview

e There are many different types of neural networks

e Fach neural network can be used to solve specific Al
problems

e This field is growing rapidly
o lan Goodfellow invented GAN in 2014

o Capsule network
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ResNet

Residual network
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ResNet

In general, for deep neural networks, after the number of
layers exceeds a certain value, the more layers, the more
difficult it is to optimize, and the performance becomes

waorse.
200 20
‘5% S 56-layer
a e
E S 20-layer
= 56-layer >
= g
& 20-layer
. .

2 5 6 1} 1 2

=
—

3 i 3 r
iter, (1e4) iter. (1e4)

CIFA-10 dataset
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ResNet

e Residual network

e Add direct link

weight layer
F(x) l relu %
weight layer identity

Residual Network



ResNet

Support deeper networks for better performance
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Attention

Attention mechanism
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Attention

e Human's attention is not average

e Give different elements different attention to improve
performance

Figure 1: Schematic of our proposed “feed-forward” attention mechanism (cf. (Cho, 2015) Figure
1). Vectors in the hidden state sequence h; are fed into the learnable function a(h;) to produce a

probability vector a. The vector c is computed as a weighted average of h;, with weighting given
by a. 997142



Application of Attention in Image
Understanding

Generate a text description of the image

A___]

[bird |
flying
over

14x14 Feature Map

a
body
of
water
l.Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word

generation
. y
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Application of Attention in Image
Understanding

Match objects in text and images

o S

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

[ .
g in a forest with

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standin
a teddy bear. in the water. trees in the background.
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Transformer

Avoid RNN structure and use Attention
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Transformer

Output
Probabilities
g L ™\
Add & Norm
Feed
Forward
s ™\ Add & Norm
,_.— .
Pl e Multi-Head
Feed Attention
Forward 2 ) Nx
— ]
Nix Add & Norm
—{((Add & Norm ] Nocked
Multi-Head Multi-Head
Attention Attention
S At
C— J \_ —,
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 1: The Transformer - model architecture.



Performance
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Performance

e Data

e Model

e Training method
e Optimization

e Parameter tuning

1057142



1) Data

Good data is the key to success
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Small Amount of Data

Large errors
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Data Volume Grows

Model errors decrease

N =10
80 - :
— X}
— Y =fix)
B0 -
@ y=glx)+e&
A0 —
20 -
0 -
—20 - | | | | | o i | |

-100 75 50 =25 0.0 2.5 5.0 1.5 10.0
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Data Volume Grows

Model errors decrease

80 -
— gix)

O S §r=ﬁ:x}
B0 -

® VyY=0(x)+e&

10.0
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Data Volume Grows

Model errors decrease

N =100
80 - I

— gix)

o ﬁ:ﬁx}
B0 -

® VyY=glx)+e&
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Data Volume Grows

Model errors decrease

N = 500
80 - I T
—_— gix)
— y=Ffix)
E,D_
@ y=glx)+&
_q_|:|_
20 -

1117142



Data Volume Grows

Model errors decrease

N = 1000
80 - . . .

— gix)

— y=fix)
E’D_ 1 ! ! | _-_ y
®@ y=gix)+e !

10.0
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2) Model

Model selection is very important
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Underfitting

Too simple model, low capacity, underfitting

N degree = 1, R(f d) = 433.84

— glx}

O S §r=ﬁ:x}
B0 -

® VyY=0(x)+e&

-100 75 50 =25 0.0 2.5 5.0 15 10.0
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Underfitting

Too simple model, low capacity, underfitting

N degree = 2, R(f d) = 412.52

— gix)

O S §r=ﬁ:x}
B0 -

® VyY=0(x)+e&

-100 75 50 =25 0.0 2.5 5.0 15 10.0
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Model Capabilities

Moderate model

. degree = 3, R(f d)=50.43

— glx}

O S j}:ﬁx}
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Model Capabilities

Moderate model

N degree = 4, R(f, d) = 48.16
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Model Capabilities

Moderate model

. degree = 5, R(f d) = 48.15
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Overfitting

Too complex model, capability is too high

degree = 10, R(f, d) = 18.85
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Overfitting

e On the training set, model errors continue to decline as
model capability increases

e Butthe final drop is overfitting

- training error

lﬂzj
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Overfitting

e Overfitting causes model errors to rise incorrectly on test
set

107 -

- training error
- =— test error

2 4 B g8 10
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Model Capabilities

Choosing the right model is very important

Error
A

Underfitting zone Qverfitting zone

generalization

training error

errar

- optimism
Y

1 -
optimal Capacity
capacity
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Model Selection

e Deep neural network is not the only machine learning
algorithm

e You can solve the problem based on a clean data set and
simpler algorithms (such as linear regression).

e Occam's Razor Guidelines
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Occam's Razor Guidelines
Simplicity first

“The explanation requiring the fewest assumptions is
most likely to be correct”
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Occam's Razor

e Proposed by 14th-century logician, William of Occam

e "When presented with competing hypotheses that make
the same predictions, one should select the solution with
the fewest assumptions”
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3) Training Method



Dropout

e In each round of optimization, some neurons are

randomly selected and added to the calculation
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e Prevent some neurons from being particularly powerful
and dominate

(b) After applying dropout.
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Dropout
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4) Optimization

Find the right  to minimize model errors
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Gradient Descent

e Find model parameter  with the smallest error
e Positive slope, reduce

e Negative slope, increase
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Gradient Descent




Gradient Descent




Adaptive Step Size Selection




5) Parameter Tuning

Parameters affect model performance
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Situation is Complex in High
Dimensions

Gradient Descent

f (x) = nonlinear function of x

Loss .
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Adaptive Step Size Selection

Starting Point

Solution

Step-size a = 0.0030 Momentum B = 0.0 We often think of Momentum as a means of dampening oscillations and
® ® speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

Miss the best
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Adaptive Step Size Selection

Starting Point

Solution

Step-size a = 0.0030 Momentum B = 0.60 We often think of Momentum as a means of dampening oscillations and
® ® speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

Miss the best
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Adaptive Step Size Selection

Starting Point

“Solution

Step-size a = 0.0030 Momentum P = 0.80 We often think of Momentum as a means of dampening oscillations and
® Ps speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

Reach the best
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Adaptive Step Size Selection

Starting Point

Step-size a = 0.0030 Momentum P = 0.90 We often think of Momentum as a means of dampening oscillations and
® ® speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

Reached the best, but oscillate
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Parameter Tuning

1. Randomly initialize model
2. Use this model to make predictions

3. Compare predictions with real results: if wrong, adjust
model

4. Repeat steps 2-3 until performance cannot be improved

5. Validate on the validation set and choose the best model
parameters
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Quiz

e What is supervised learning? What is unsupervised
learning?

e |simage classification supervised or unsupervised?
e |s clustering supervised or unsupervised?

e Isthe linear regression model a straight line or an S-
curve?

e Isthe logistic regression model a straight line or an S-
curve?

e What are the two parts of a perceptron?
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Quiz i

e What are the three most typical types of deep neural
networks?

e The model is not capable enough. Will it overfit or
underfit?

e The model is too powerful. Will it overfit or underfit?

e What is Occam's Razor Principle?
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