

#### **Introduction To Artificial Intelligence**

Chen Yishuai

yschen@bjtu.edu.cn

School of Electronic Information Engineering, Beijing Jiaotong University

Network Intelligence Lab

### Content

- Introduction
- Machine learning model
- Deep learning model
- Model training
- Model selection

# Algorithms

- Supervised
- Unsupervised
- Semi-supervised
- Reinforcement learning

## Supervised



Western Digital.

Labeled correct answers, e.g., picture categories Learn a model to obtain correct answer

### Unsupervised



Western Digital.

#### No labeled correct answer, e.g., only pictures Use algorithm to learn the data pattern

## 1) Supervised Learning

Known correct answer

## **Supervised Learning**





- 1. Labeling
- 2. Training
- 3. Testing

# **Preparing Data**

- 1. Collecting data set
- 2. Labeling
  - Label the pictures: "Cat", "Dog"
- 3. Divide the data into three parts
  - Training set: training model
  - Validation set: selecting model parameters
  - Testing set: test model accuracy

# **Training Model**

- 1. Training: training the model
- 2. Validation: selecting model parameters
- 3. Testing: evaluate the model on the test set



# 2) Unsupervised learning

Without labels, look for patterns on the data

## **Unsupervised learning**

- Clustering
- Outlier detection
- Auto-encoder
- Principal component analysis

## 1) Clustering

#### Specify number of clusters: 3



# 1) Clustering

- After clustering, observe each cluster to get its meaning
- The result might look like this:



## 1) Clustering

• The result may also be like this



### 2) Outlier Detection

Find outliers, i.e., abnormal points



Outlier Detection

## 3) Auto-Encoder

- Encoding: get compressed representation of original image
- Decoding: restore original image based on compressed representation



## 3) Auto-Encoder

- The result of compression is the code of the data obtained by auto-encoding
- Generally, deep neural network is used as encoder and decoder

# 4) PCA: Principal Component Analysis

• The data information is mainly on its principal component vector



#### **4) PCA**

- Use PCA to represent 3D data in 2D
- Little information is lost, achieving dimensionality reduction





#### Word representation using PCA



## 3) Semi-Supervised Learning

## **Semi-Supervised Learning**

- Labeling is time-consuming and labor-intensive
- Uses a large amount of data without labeling
- Combines a small amount of labeling data to improve performance



## 4) Reinforcement Learning

Learning based on the rewards received

## **Reward-Based Learning**

- No labeled data set
- There is a reward
- Learning based on the rewards received
- Goal: maximize reward



#### **Multi-Arm Bandit**



Which machine to choose?

### **Problems**



- "Utilization": Play the highest win rate machine ever found
- "Exploration": Play on machines that have not been fully explored

### Key

#### **Balance** "utilization" & "exploration"

## **UCB Algorithm**

- Upper Confidence Bounds: Upper bound of confidence interval
- Includes average win rate (mean) and exploration space (standard deviation)
- Balance "utilization" and "exploration"



## **Reinforcement Learning**

- Make a lot of experiments
- Don't be afraid to jump into the fire pit
- Replay



## **Reinforcement Learning**

- Keep trying
- Get the "value" of each position
- Or get the best action in every position



### **MDP: Markov Decision Process**

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function *P*(*s* ' | *s*, *a*)
- Reward function *R*(*s*, *a*, *s*')
- Start state *s*<sub>0</sub>
- Discount factor γ
- Horizon H



# Application

- Robot
- Game
- Automatic control

# Challenge

- Reward is delayed: examination results will not be known until the end of the semester
- Sparse reward feedback: only one final exam per semester

## Summary

- 1. Supervised learning
  - Known correct answer (label)
- 2. Unsupervised learning
  - Discovering patterns from data
- 3. Semi-supervised learning
  - Leverage large amounts of data without labeling
- 4. Reinforcement Learning
  - Learn by trying

### Model
#### **Linear Regression**



## **Logistic Regression**

# **Logistic Regression**

- Classification model
- Relationship between exam passing probability and study time



S Curve



#### Model human brain neurons



#### **Neuron Model**

- Neurons (brain cells) are connected through synapses
- The brain constantly creates, strengthens, and weakens these connections



Figure I ORGANIZATION OF THE MARK I PERCEPTRON

- Linear weighted sum of inputs
  - Neuron input:
  - Connection weight:
  - Sum:



• Nonlinear activation function



- Input linear weighting sum
- Non-linear activation function





## Implementation



## **Model Training Method**

Learn from mistakes

## **Brain Learning Process**

- Continuously create, strengthen, and weaken connections between neurons based on experimental results
- i.e., adjust the weight of the connection:



## **Machine Learning Process**

• An error occurred, adjusting model parameters backwards



#### **Perceptron Learning Process**

• Find errors, adjust weight to reduce errors



#### **Perceptron Learning Process**

• Find errors, adjust , adjust decision boundaries



#### **Learning Process**



#### training set

test set

#### **SVM**

- Support Vector Machines
- Not only avoid mistakes, the farther the two sides are, the better



#### Kernel

Use a non-linear kernel function instead of a vector dot product to support curve boundaries



### **Deep Learning**

## **Machine Learning**

- First extract image features
- Then learn based on these features





Data Supervised independent Learning

## **Deep Learning**

- No specific feature extraction step
- Send the raw data directly to the multilayer neural network for learning
- Error occurred, adjust the model parameters



Learning

# Typical Neural Network Structures

FFN、CNN、RNN

#### **Forward Neural Network**

FFN

#### **Forward Neural Network**



Hidden and output layer units: perceptron

## **Activation Function**

- ReLU: Rectified Linear Unit
- Sigmoid
- Tanh: Hyperboilic Tangent

#### ReLU



: Rectified Linear Unit





:S曲线

#### Tanh



: Hyperboilic Tangent

### **Deep Neural Network**



Multiple hidden layers

## **Benefits of Depth**

Generally, the deeper, the stronger the model



Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled markers indicate errors made by the shallow model.

### **FNN Experiments**

- Browser-based TensorFlow experiments
- http://playground.tensorflow.org





#### **Convolutional Neural Network**

## **2D Convolution**

Multiply corresponding positions, then add



## **Image Convolution**

The filter slides on the picture for convolution.

| 7 | 2 | 3 | 3 | 8 |
|---|---|---|---|---|
| 4 | 5 | 3 | 8 | 4 |
| 3 | 3 | 2 | 8 | 4 |
| 2 | 8 | 7 | 2 | 7 |
| 5 | 4 | 4 | 5 | 4 |

\*

| 1 | 0 | -1 |
|---|---|----|
| 1 | 0 | -1 |
| 1 | 0 | -1 |

| 6 |  |
|---|--|
|   |  |
|   |  |

=

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

## **Convolution Pixel Gradient**

Select appropriate convolution kernel (filter) to calculate the pixel gradient of the image



## **Convolutional Neural Network**

- A special multilayer forward neuron network
- Origin: Handwriting Recognition
- Commonly used in image and vision applications, text processing
## Architecture

- Convolutional layer
  - Convolution + non-linear activation function (such as ReLU)
- Pooling layer



# **Pooling Layer**

Sampling reduces the amount of data

| 12  | 20  | 30 | 0  |                       |     |    |
|-----|-----|----|----|-----------------------|-----|----|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool | 20  | 30 |
| 34  | 70  | 37 | 4  |                       | 112 | 37 |
| 112 | 100 | 25 | 12 |                       |     |    |

Max Pooling

# **Deep CNN**

- Send the raw data directly to the multilayer neural network for learning
- Multiple convolution and pooling layers
- An error occurred, adjusting the convolution kernel all the way



Learning

#### LeNet

- Handwriting recognition
- 1988, LeCun



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

# Image Processing Result

#### After the first layer of convolution and pooling



#### after first pooling layer

# Image Processing Result

#### After the second layer of convolution and pooling



after second pooling layer

# **Deep CNN**

- Many layers
- Tens of millions of pixels
- Tens of millions of parameters need to be calculated and adjusted



GoogleNet

#### GPU

• Parallel computing with thousands of computing units in GPU



## **Great Performance Gain**

ImageNet object recognition image dataset



# **Understanding of CNN**

• Extract simple features at the bottom and complex features at the high level



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

## **CNN Demo**

- Andrej Karpathy ConvNetJS
- https://cs.stanford.edu/people/karpathy/convnetjs/demo /mnist.html
- Train CNN in browser, experiment with MNIST handwriting recognition task



#### **Recurrent Neural Network**

#### RNN

- "Memory unit"
- Suitable for processing time series data and natural language processing (NLP) tasks
- Sequence input





Long short-term memory unit



#### **LSTM**

- The human brain forgets
- Input gate, output gate, forget gate





## **LSTM-based RNN**

#### Long-Short Term Memory module: LSTM



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

# Wide Application of RNN

- 1. Speech recognition
- 2. Machine translation
- 3. Text generation
- 4. Recommendation system
- 5. Time series prediction

#### **Summary: Deep Learning Models**

- 1. Forward neural network (FFN)
- 2. Convolutional neural network (CNN)
- 3. Recurrent neuron network (RNN)



## Overview

- There are many different types of neural networks
- Each neural network can be used to solve specific AI problems
- This field is growing rapidly
  - Ian Goodfellow invented GAN in 2014
  - Capsule network

## ResNet

#### **Residual network**

#### ResNet

In general, for deep neural networks, after the number of layers exceeds a certain value, the more layers, the more difficult it is to optimize, and the performance becomes worse.



CIFA-10 dataset

### ResNet

- Residual network
- Add direct link



**Residual Network** 



Support deeper networks for better performance



## Attention

#### **Attention mechanism**

#### Attention

- Human's attention is not average
- Give different elements different attention to improve performance



Figure 1: Schematic of our proposed "feed-forward" attention mechanism (cf. (Cho, 2015) Figure 1). Vectors in the hidden state sequence  $h_t$  are fed into the learnable function  $a(h_t)$  to produce a probability vector  $\alpha$ . The vector c is computed as a weighted average of  $h_t$ , with weighting given by  $\alpha$ .

# **Application of Attention in Image Understanding**

Generate a text description of the image



# Application of Attention in Image Understanding

#### Match objects in text and images



A woman is throwing a frisbee in a park.



A dog is standing on a hardwood floor.



A <u>stop</u> sign is on a road with a mountain in the background.



A little <u>girl</u> sitting on a bed with a teddy bear.



A group of <u>people</u> sitting on a boat in the water.



A giraffe standing in a forest with trees in the background.

## Transformer

#### **Avoid RNN structure and use Attention**

### Transformer



Figure 1: The Transformer - model architecture.

# Performance

# Performance

- Data
- Model
- Training method
- Optimization
- Parameter tuning

### 1) Data

#### Good data is the key to success

## **Small Amount of Data**

Large errors



#### **Data Volume Grows**

Model errors decrease










#### 2) Model

#### Model selection is very important

# Underfitting

Too simple model, low capacity, underfitting



# Underfitting

Too simple model, low capacity, underfitting



Moderate model



Moderate model



Moderate model



# Overfitting

Too complex model, capability is too high



# Overfitting

- On the training set, model errors continue to decline as model capability increases
- But the final drop is overfitting



# Overfitting

• Overfitting causes model errors to rise incorrectly on test set



Choosing the right model is very important



## **Model Selection**

- Deep neural network is not the only machine learning algorithm
- You can solve the problem based on a clean data set and simpler algorithms (such as linear regression).
- Occam's Razor Guidelines

#### **Occam's Razor Guidelines**

#### **Simplicity first**

"The explanation requiring the fewest assumptions is most likely to be correct"

#### **Occam's Razor**

- Proposed by 14th-century logician, William of Occam
- "When presented with competing hypotheses that make the same predictions, one should select the solution with the fewest assumptions"

# 3) Training Method

### Dropout

- In each round of optimization, some neurons are randomly selected and added to the calculation
- Prevent some neurons from being particularly powerful and dominate



(a) Standard Neural Net



(b) After applying dropout.





# 4) Optimization

Find the right to minimize model errors

### **Gradient Descent**

- Find model parameter with the smallest error
- Positive slope, reduce
- Negative slope, increase



#### **Gradient Descent**



#### **Gradient Descent**





#### 5) Parameter Tuning

#### Parameters affect model performance

# Situation is Complex in High Dimensions

## Gradient Descent

f (x) = nonlinear function of x







We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

#### Miss the best





We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

#### Miss the best





We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

#### Reach the best



#### Reached the best, but oscillate

### **Parameter Tuning**

- 1. Randomly initialize model
- 2. Use this model to make predictions
- 3. Compare predictions with real results: if wrong, adjust model
- 4. Repeat steps 2-3 until performance cannot be improved
- 5. Validate on the validation set and choose the best model parameters

#### Quiz I

- What is supervised learning? What is unsupervised learning?
- Is image classification supervised or unsupervised?
- Is clustering supervised or unsupervised?
- Is the linear regression model a straight line or an Scurve?
- Is the logistic regression model a straight line or an Scurve?
- What are the two parts of a perceptron?

#### Quiz II

- What are the three most typical types of deep neural networks?
- The model is not capable enough. Will it overfit or underfit?
- The model is too powerful. Will it overfit or underfit?
- What is Occam's Razor Principle?