

Machine Learning & Artificial Intelligence

Chen Yishuai

yschen@bjtu.edu.cn

School of Electronic Information Engineering, Beijing Jiaotong University

Network Intelligence Lab

Content

- Convolution and filtering
- Classic methods
- Deep learning methods
- Object detection and recognition
- Applications

Convolution and Filtering

Convolution and Filtering

- 2D convolution
- Multiply the convolution kernel with the pixel value at the corresponding position of the graphic, and then add

Image Convolution

• The convolution kernel slides on the picture to perform the convolution operation

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

*

1	0	-1
1	0	-1
1	0	-1

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

6	

Convolution for Image Smoothing

Obscured

Convolution to Get Image Gradient

Extracting edges

Classic Methods

Feature Extraction

HOG、SIFT、Surf

Image HOG Feature

Histogram of oriented gradient

Image HOG feature

- 2005, Navneet Dalal & Bill Triggs, CVPR
- Suitable for pedestrian detection
- Pedestrians stand upright, subtle body movements do not affect detection results

HOG Results

Describe the appearance and shape of objects in the image

Input image

Histogram of Oriented Gradients

Histogram of Oriented Gradients

Input image

Input image

Histogram of Oriented Gradients

Histogram of Oriented Gradients

Implementation

- 1. Divide the image into tiles and calculate the pixel gradient or edge direction in the tile
- 2. Use the statistic of histogram as features
- 3. Normalized to deal with light changes and shadows

SIFT Algorithm

Key point detection and description

SIFT

- Scale-invariant feature transform
- Widely used in object recognition
- More than 3 SIFT features are sufficient to calculate the position and orientation of the target
- David Lowe, published in 1999, refined in 2004

Idea of SIFT

• Find the position, size, and direction of key points

Key Point

- Extreme Value Detection
- Keypoint Positioning
- Key Point Description

Extreme Value Detection

- Image convolution with Gaussian filtering at different scales
- Find key points using the differences in convolution results

Keypoint Positioning

- From pixel information near key point, key point size, main curvature, screening key points
- Eliminate key points susceptible to noise

Key Point Description

A 500*500 image, get about 2000 features

Key Point Descriptor

• Based on histogram, so it stays the same under different light and viewing angles

Keypoint Extraction Results

Matching

SURF

- Speeded Up Robust Features
- 2006, ECCV
- Inspired by SIFT, similar, faster, more stable performance
 - Feature point detection and description
 - Descriptor pairing

SURF Algorithm Results

Deep Learning Methods

Deep CNN

- Send the raw data directly to the multilayer neural network for learning
- Multiple convolution and pooling layers
- An error occurred, adjusting the convolution kernel all the way

Learning

Deep CNN

• Extract simple features at the bottom and complex features at the high level

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Application

Object detection, recognition, handwriting recognition, object segmentation

[[]Krizhevsky 2012]

[Ciresan et al. 2013]

[NVIDIA dev blog]

[Faster R-CNN - Ren 2015]

Application

Disease recognition, face recognition, facial element recognition

[Stanford 2017]

(d) benign

[Nvidia Dev Blog 2017]

Figure 1. Illumination and Pose invariance.

[FaceNet - Google 2015]

[Facial landmark detection CUHK 2014]

Application

Painting, image style conversion, sharpness enhancement

[DeepDream 2015]

[Gatys 2015]

[Ledig 2016]

Denoising

Noisy Input

Autoencoder Output

Image Conversion

- Image restoration, rendering, coloring
- Map extraction, scene conversion

Image understanding

Image - Q&A - Text description

[VQA - Mutan 2017]

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

[Karpathy 2015]

Generating Image Descriptions (2015)

人工智能:实时场景理解,文本生成

00:00

Object Detection & Recognition

Problems

Object detection, segmentation, recognition

(a)

(b)

(d)

Masking, interference, noise

Object Detection

Object Detection

Object Detection

1) Traditional method

- V-J Detection
- HOG Detection
- DPM Algorithm

V-J Detection

- 2001, Paul Viola, Michael Jones
- Human face detection
- Haar feature

HOG Detection

Pixel gradient

DPM Algorithm

- Deformable Part-Based Model
- Each part has its own classifier (eg: eyes, mouth)
- The position of each part should be reasonable (eg: eyes above mouth)

2) Deep Learning Methods

- 2012, AlexNet
- Two-stage detector
 - Find the area before identifying the target
 - RCNN、Pyramid Networks
- Single-stage detector
 - Identify the target without finding the area
 - YOLO、SSD、Retina-Net
- Evaluation mAP
 - VOC 83% (2018), COCO (69% 2019)

VGG16

- CNN objection Recognition
- Oxford university, K. Simonyan, A. Zisserman, 2014

Two-stage detector

Find the area before identifying the target

RCNN

- Initialize small areas
- Greedy algorithm merges regions
- Finally selected 2000 possible regions

R-CNN: Regions with CNN features

RCNN

• CNN: In addition to object recognition, it also recommends to adjust the area

Fast R-CNN

- R-CNN: CNN on every area. Totally 2000 areas
- Improvement
 - CNN once for all images
 - Select the possible areas on the obtained feature map
- Dozens of times faster

Faster R-CNN

- Remove the time-consuming work of selective search for possible areas, use another network to predict areas where objects may appear
- 10 times faster

Single-Stage Detector

Identify the target without finding the area

YOLO

- You Only Look Once , 2015
- Image divided into small blocks. Multiple possible object areas selected for each block.
- For each region, CNN gives its offset recommendation and object type judgment

YOLO

- Network: GoogleNet
- Faster, no problem at 45 frames per second

Network Design: YOLO

- Modified GoogLeNet
- 1x1 reduction layer ("Network in Network")

Appendix: GoogLeNet

Our network architecture is inspired by the GoogLeNet model for image classification [34]. Our network has 24 convolutional layers followed by 2 fully connected layers. Instead of the inception modules used by GoogLeNet, we simply use 1×1 reduction layers followed by 3×3 convolutional layers, similar to Lin et al [22]. The full network is shown in Figure 3.

Results

- More acurrate
- Disadvantages: small object recognition is difficult, such as bird swarms

SSD

- Single Shot MultiBox Detector
- 2016, ECCV

Default Object Box Shape

- Cars, people have specific shapes
- Manual selection of initial four default boxes

Multi-Scale Feature Map

• Use blocks of different scales to detect objects of different scales

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

Multi-Resolution CNN

- Add 6 CNNs after VGG with different resolutions
- High-resolution CNN helps identify small targets

RetinaNet

- 2017 ICCV
- Backbone network: ResNet + Feature Pyramid Net (FPN)
 - Different levels of pyramid have different resolution
- Task network
 - Objection recognition + Bounding box discovery

Focal Loss

- The most important contribution is this Loss
- Use this Loss to replace cross entropy, greatly improving accuracy
- Reduce the weight of those easily identifiable classes in Loss and increase those that are difficult to classify
- : accurate prediction probability

() = -(1 -) ()

RetinaNet Results

Summary

Performance

ImageNet Classification top-5 error (%)

Object detection accuracy improvements

Object Segmentation

Extract the outline of an object from a image

Image Segmentation

Semantic Segmentation

Classification

Classif + Localisation

single object

Object Detection Semantic Segmentation

multiple objects

Classification

Classif + Localisation

single object

Object Detection Instance Segmentation

multiple objects

1124 人在观看: [TSKS]我家的熊孩子.E84.180422 立即围观 >

人工智能:图像分割

去bilibili观看 分享

播放器初始化…[完成] 加载用户配置…[完成] 加载视频地址…[完成] 加载视频内容…

 00:00 / 00:00
 360P

 进入bilibili,一起发弹幕吐槽!
 去吐槽

Classify each pixel to get Mask

DeepMask

- Facebook, 2015 NIPS
- Two tasks after VGG
 - MASK
 - Object detection

Mask RCNN

• 2017, Based on FPN (pyramid network) and ResNet

Mask RCNN Results

Mask RCNN Results

Application

Tracking and Coloring Object

Nuclear Segmentation

	Contraction of the local distance	nucleus	0.903	Same Same	CONTRACTOR OF
nucleus 0.99	94 nucleus 0.993 nucleus 0	.993 ucteus 0.981		Con Class	
1.2.5 P		nucleus 0.972 teus 0.996			
				1000000	1. A. C. 10
					1 martine and a lot
					Cole States
nucleus 0.9	98	2011 AND 10	-	Sec. S	A CONTRACTOR
	pucle	us 0.996	nucleus 0.577		N. M. C. C. C. C.
		1 State of State			COLORIS -
puclous 0.005	pucleus 0.995	nucleus	0.995		Contraction of the
nucleus 0.998		nucleus 0.882	nuclaus 0.939	Back .	and Jours 0, 792
			indefeus 0.959	nucleus 0.629	Aucleus 0 791cleus 0.946
	200222000	nucleus 0,985			
	1.000	1000	W	And Designed	nucleus 0.937
nucleus 0.982	nu	cleus 0.979		nucleus 0 922	nucleus 0.780us
States of the second	ucleus 0.992	100 A. 100	nucleus 0.850	nucleus	0.976
G 8225339		nucleu	s 0.511 nucleus dié	1690.958	nucleus 0.694
	Contraction (State	0000	ista la compañía de la		
		nucleus 0.961			nucleus 0.858
		nucleus 0.1	830	us 0.774 nucle	nucleus 0.812
Color and Color					No China
	nucleus 0.979	on		nucleus 0.956	
Carlo Carlo		And States		nucleus 0.710	nucleus 0.829 nucleu leus 0.741 nucleus 0.866
States A	nucleus 0.994 nucleus 04	deus 0.993			
		nucleus	0.941	nucleus 0.75	2 nucleus 0.676
and the second	State States	Course of the second	and the second of the		La allegate
nucleus 0.984	pucleus 0.862	and the second	nucleus 0.958 0.971 nu	cleus 0.893	nucleus 0.990
	nucleus 0.9	86		nucle	us 0.82 <mark>3</mark>

Industrial Robot

3D Buildings

Geographic Polygon

Photo Effects

(a)

(b)

Face Recognition

- Face recognition technology finds suspect in Maryland shootings
- Pop star Taylor Swift, filtering fans and followers at concerts
- Shelter tracks use of shelters

FaceNet

In 2015 Google proposed

FaceNet

This Face recognition/verification/clustering model learns a mapping from face images to a compact **Euclidean space** where distances directly correspond to a measure of face similarity.

FaceNet Architecture

Using Triple Loss to capture similarities and differences between different faces

FaceNet Design

Convert a human face into a 128-dimensional vector representation

Figure 2. Model structure. Our network consists of a batch input layer and a deep CNN followed by L_2 normalization, which results in the face embedding. This is followed by the triplet loss during training.

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

Pose Detection and Recognition

Pose Detection and Recognition

Emotion

Traffic Flow Counting

741 人在观看: 【孝利家民宿2】合集 (已更新至E12.180422... 立即围观 >

人工智能:交通流量计数

去bilibili观看 分享

播放器初始化…[完成] 加载用户配置…[完成] 加载视频地址…[完成] 加载视频内容…

Traffic Flow Counting

454 人在观看: 【木鱼微剧场】《东方快车谋杀案》阿加莎... 立即围观 >

人工智能:交通流量计数II

去bilibili观看 分享

播放器初始化…[完成] 加载用户配置…[完成] 加载视频地址…[完成] 加载视频内容…

Traffic Signal Recognition

(a)

Rail Recognition

664 人在观看: 【QiTV】【战神4】纯剧情剪辑完结合集(1... 立即围观 >

人工智能:铁路信号检测

去bilibili观看 分享

播放器初始化…[完成] 加载用户配置…[完成] 加载视频地址…

Crossing Monitoring

428 人在观看: [TSKS]孝利家的民宿2.E12.180422.中字 立即围观 >

人工智能:铁路信号检测

去bilibili观看 分享

播放器初始化…[完成] 加载用户配置…[完成] 加载视频地址…[完成] 加载视频内容…

Text Recognition

Problems

Accuracy, privacy protection, fairness

Accuracy Problem

• Tesla's autonomous driving system fails to identify white vans

Accuracy Problem

Privacy Protection

- On May 14, 2019, the San Francisco City Supervisory Commission passed a decree by 8 votes to 1 to ban city workers from purchasing and using face recognition technology
- Face recognition technology tends to endanger civil rights and civil liberties far more than its claimed benefits. This technology will exacerbate racial inequalities and threaten our ability to live without long-term government surveillance.

Quiz

- What is instance segmentation for?
- In reality, what problems should be paid attention to in the application of computer vision technology?
- Give examples of computer vision applications you might need at work
- Deep learning brings major breakthroughs in the field of images, please give an example that impresses you