
Concept-Aware Deep Knowledge Tracing and Exercise
Recommendation in an Online Learning System

Fangzhe Ai
School of Electronics and
Information Engineering

Beijing Jiaotong University
17125001@bjtu.edu.cn

Yishuai Chen
School of Electronics and
Information Engineering

Beijing Jiaotong University
yschen@bjtu.edu.cn

Yuchun Guo
School of Electronics and
Information Engineering

Beijing Jiaotong University
ycguo@bjtu.edu.cn

Yongxiang Zhao
School of Electronics and
Information Engineering

Beijing Jiaotong University
yxzhao@bjtu.edu.cn

Guowei Fu
TAL Education Group Inc.

Beijing, China, 100080
fuguowei@100tal.com

Zhenzhu Wang
School of Electronics and
Information Engineering

Beijing Jiaotong University
18120144@bjtu.edu.cn

ABSTRACT
Personalized education systems recommend learning con-
tents to students based on their capacity to accelerate their
learning. This paper proposes a personalized exercise rec-
ommendation system for online self-directed learning. We
first improve the performance of knowledge tracing models.
Existing deep knowledge tracing models, such as Dynamic
Key-Value Memory Network (DKVMN), ignore exercises’
concept tags, which are usually available in tutoring sys-
tems. We modify DKVMN to design its memory structure
based on the course’s concept list, and explicitly consider
the exercise-concept mapping relationship during students’
knowledge tracing. We evaluated the model on the 5th grade
students’ math exercising dataset in TAL, one of the biggest
education groups in China, and found that our model has
higher performance than existing models. We also enhance
the DKVMN model to support more input features and ob-
tain higher performance. Second, we use the model to build
a student simulator, and use it to train an exercise recom-
mendation policy with deep reinforcement learning. Exper-
imental results show that our policy achieves better perfor-
mance then existing heuristic policy in terms of maximizing
the students’ knowledge level. To the best of our knowl-
edge, this is the first time that deep reinforcement learning
has been applied to personalized mathematic exercise rec-
ommendation.

1. INTRODUCTION
Online self-directed learning systems, such as Massive Open
Online Courses (MOOCs), are prevailing. These systems,
however, assign same exercises to all students, which is in-
efficient. For comparison, personalized exercises recommen-
dation can improve the efficiency of students’ learning. In

this paper, we propose a personalized exercise recommenda-
tion system for an online self-directed learning service. The
system consists of two parts:

• A student knowledge tracing model, which traces a
student’s knowledge state and predicts whether or not
she can finish the exercise correctly.

• A personalized exercise recommendation policy which
recommends appropriate exercises to students to ac-
celerate her learning process.

Existing deep knowledge tracing models [9, 13] ignore exer-
cises’ knowledge concept properties, which are usually avail-
able in tutoring systems. For comparison, in this paper, we
propose a concept-aware deep knowledge tracing model. The
model is inspired by Dynamic Key-Value Memory Network
(DKVMN) model [13]. DKVMN model has a static matrix
called key which stores the latent knowledge concepts and
a dynamic matrix called value which stores a student’s con-
cept mastery levels. The model computes the correlation
between an exercise and the latent concepts in the key, and
then uses it to read the student’s concept mastery levels in
the value, and predict whether the student will finish the ex-
ercise correctly. We improve the DKVMN model as follows:
1) we design its memory structure based on the course’s con-
cept list and explicitly consider the exercise-concept map-
ping relationship during students’ knowledge tracing. 2) We
enhance it to support more input features, including exercise
difficulty, stages, and student practice time. We evaluated
the model on the 5th grade students’ math exercising dataset
in TAL, and found that our model has higher performance
than existing deep knowledge tracing models.

In terms of personalized exercise recommendation policy,
most of existing algorithms are heuristic, e.g., exercises which
are too easy or too hard for a student should be avoided.
These algorithms may be not optimal, as they only con-
sider the short-term reward. In this paper, we build a stu-
dent simulator with our concept-aware deep knowledge trac-
ing model, and then use it to train a flexible and scalable
personalized exercise recommendation policy with deep re-

inforcement learning, which considers long-term reward of
recommended items.

In summary, the main contributions of this paper are two
folds:

• We propose a new exercise-level deep knowledge trac-
ing model whose structure is built based on the course’s
concept list, and the exercise-concept mapping rela-
tionships are utilized during students’ knowledge trac-
ing. The model supports more input features and ob-
tains higher performance compared with existing mod-
els.

• We propose an exercises recommendation algorithm
which uses model-free reinforcement learning with neu-
ral network function approximation to learn an exer-
cise recommendation policy. The policy directly oper-
ates on raw observations of a student’s exercise history.
Experimental results show that our policy achieves
better performance than existing heuristic policy in
terms of maximizing students’ knowledge level.

2. RELATED WORK
Knowledge Tracing : The work in [3] proposed a Bayesian-
based knowledge tracing model. It models a student’s status
of a knowledge concept as a binary variable, and updates the
probability of her mastering the concept according to her
results of doing exercises through a Hidden Markov Model.
This model is at the concept level, and ignores the relation-
ship between different concepts. The work in [9] proposed a
deep knowledge tracing (DKT) model with recurrent neural
network. It models a student’s knowledge states as latent
variables, and gets better performance than Bayesian-based
model does [6]. The work in [12] proposed to improve DKT
by considering exercises’ semantic features. The work in [13]
tried to model the correlation between different latent con-
cepts. Inspired by DKVMN, this paper proposes a model
whose structure is explicitly built based on the course’s con-
cept list, and the exercise-concept mapping relationship is
utilized in the model.

Exercise Recommendation: The work in [1] proposed that a
student is recommended by an exercise, if the probability of
her doing the exercise correctly is around 50%. The prob-
lem of this algorithm is that the threshold 50% is heuristic
and may be not optimal. The work in [2] allows experts
to specify a ZPD (Zone of Proximal Development) based
on current knowledge state of a student, and then chooses
the most profitable exercise by multi-armed bandits algo-
rithm. The algorithm can discover the characteristics of
students through exploration but it is inefficient, because ev-
ery student needs an independent exploration process. The
work in [5] leverages a DKT model towards recommenda-
tion, and frame the problem space using ZPD explicitly fa-
cilitated by the DKT model. The work in [7] first estimates
each student’s knowledge profile from their previous exer-
cise results using SPARFA framework. Then, it uses these
knowledge profiles as contexts and applies contextual ban-
dits algorithm to recommend exercises, for maximizing a
student’s immediate success, i.e., her performance on the
next exercise. The problem of this algorithm is that it only
considers the next step and thus its performance may be

not optimal. The work in [10] evaluated a review schedul-
ing algorithm for spaced repetition systems based on deep
reinforcement learning. We are inspired by this work and
evaluate the performance of deep reinforcement learning in
our math self-directed learning system.

3. BACKGROUND
In this section, we introduce our online learning system and
dataset.

3.1 Intelligent Practice System (IPS)
IPS is an online self-directed learning system developed by
TAL Education Group, Inc. of China. In IPS, each course
(e.g., the 5th grade math) has tens of units. Each unit in-
cludes 7 stages, i.e., 1) warming-up exercises before class, 2)
in-class exercises before lecture, 3) video lecture, 4) in-class
exercises after lecture, 5) homework exercises, 6) unit review
exercises, 7) multi-units review exercises. In these 7 stages,
stages 1, 2, 3, 4, 5 include contents of a single knowledge
concept, but stages 6 and 7 include exercises of other knowl-
edge concepts in order to review. As IPS is a self-directed
learning system, a student can choose any teaching unit to
study. In a unit, she can also exit current stage or the whole
unit at any time. The system records the student’s learning
duration in each stage, the exercises she practices, and her
results, i.e., whether or not the answer is correct.

In IPS, each exercise has three knowledge concept tags,
which are provided by experts. The knowledge concept tags
have a hierarchical tree structure. For instance, for one ex-
ercise, its 1st, 2nd, and 3rd level concept tags are ”Num-
ber Theory”, ”Prime Number and Composite Number”, and
”Decomposition of Prime Factor”, respectively.

3.2 Data Set and Data Pre-Processing
We use a sample of anonymized student usage interactions
from the 5th grade math curriculum in IPS. We choose exer-
cising records whose first-level knowledge concept is ”Num-
ber Theory”, which has 7 second-level knowledge concepts
and 15 third-level knowledge concepts. We further choose
students whose exercise records include at least 5 exercises.
The resulting dataset includes 44,128 exercise records of
7,124 students.

4. KNOWLEDGE TRACING MODEL
We now introduce our knowledge tracing model based on
DKVMN model, and highlight our improvement in aspects
of memory structure, knowledge concept weight, and read
and update process.

4.1 Concept-Aware Memory Structure
We modify DKVMN to design its memory structure based
on the course’s concept list. Fig. 1 plots the model’s struc-
ture, which is based on DKVMN model [13]. As shown in
Fig. 1, Mk

t is the concept embedding matrix whose size
is M × N , where N is the number of memory locations,
and M is the vector size at each location. We set N equal
to the number of the course’s knowledge concepts. As we
have 1 first-level knowledge concept, 7 second-level knowl-
edge concepts and 15 third-level knowledge concepts, we
have N = 23. Then, in each location, the student’s state for
the corresponding knowledge concept is saved. Thus, the

Figure 1: Concept-aware DKVMN model structure.

model’s memory architecture is explicitly designed to rep-
resent knowledge concepts. For comparison, N is a model
parameter in DKVMN representing the number of latent
knowledge concepts, e.g., N = 5. As our model is in-
spired by DKVMN, we name it Concept-Aware DKVMN,
i.e., DKVMN-CA.

4.2 Knowledge Concept Weight
As a student’s state of a knowledge concept is saved in the
corresponding memory location, when a new exercise ar-
rives, only the exercise’s related concepts’ memory locations
are retrieved and updated. We now present the details of
such a procedure. In this section, we calculate the knowl-
edge concept weight (KCW) of the exercise. The weights
will be used to calculate the weighted sum of a user’s cur-
rent knowledge concept states to predict her performance
on the exercise. It will also be used to update the student’s
knowledge state after obtaining the answer result of the stu-
dent on the exercise.

We first obtain the embedding of the arrived exercise. As
shown in Fig. 1, when an exercise qt arrives at time t, it is
first transformed into an embedding vector mt through an
exercise embedding matrix A. We then calculates the KCW
through Algorithm 1. As shown in Algorithm 1, at line 2,
we initialize the weight list R. As each exercise has three
knowledge concepts, the length of R is 3. Then, for each
knowledge concept k (line 2), we calculate the dot product
of the embedding of the exercise (i.e., qt) and the concept
embedding (line 3). We then calculate the KCW by ob-

taining softmax of R, with Softmax(zi) = ezi/
∑N
j=1 e

zj

(line 6). Then, we initialize an all-zero vector Weight whose
length is the number of the knowledge concepts N(line 7).
For each knowledge concept k of the exercise (line 8), we set

its weight value in Weight.

In summary, DKVMN computes the relationship weights be-
tween the exercise and all latent knowledge concepts, but we
just compute the relationship weights between the exercise
and its knowledge concepts. For the exercise’s relationship
weights with other concepts, we set them zeros.

Algorithm 1 Knowledge Concept Weight Calculation

Input:
qt: embedding of the exercise arrived at time t
Kt: knowledge concept list of qt
Mk: the concept embedding matrix

Output:
Weight: Knowledge concept weight of the exercise arrived at
time t

/∗ Calculate KCW ∗/
1: R⇐ []
2: for each n ∈ Kt do
3: corr ⇐mT

t ·Mk[n]
4: R.append(corr)
5: end for
6: Rs ⇐ Softmax(R)

/∗ Reshape the weight vector to make its length equal to the
number of concepts∗/

7: Weight⇐ [0, ..., 0]
8: i⇐ 0
9: for i < 3 do

10: Weight[Kt[i]] ⇐ Rs[i]
11: i⇐ i+ 1
12: end for
13: return Weight

4.3 Read Process
We then use the obtained KCW to calculate the weighted
sum of the user’s current knowledge concept states to predict
the student’s performance on the exercise. Denote KCW by
w, we have rt =

∑N
i=1 wiM

v
t , i.e., the knowledge state of

concepts related to the exercise qt.

We further concatenate rt with the embeddings of the exer-
cise’s difficulty and stage feature, i.e., dt and gt. The result
then passes through a fully connected layer with activation
function Tanh to get a summary vector ft, which contains
all information of the student’s knowledge state related to
qt and the exercise’s features, i.e.,:

ft = Tanh(WT
0 [rt,dt,gt,mt])

where Tanh(zi) = (ezi − e−zi)/(ezi + e−zi).

Finally, ft passes through a fully connected layer to output
the probability that the student would do the exercises qt
correctly. Denote the probability by p, we have

p = Sigmoid(WT
1 ft)

where Sigmoid(zi) = 1/(1 + e−zi).

4.4 Update Process
We then use the KCW to update the student’s knowledge
state after observing the her answer result. The update
process updates the value matrix Mv

t , which represents the
student’s current state of knowledge concept k. Our model
is different from DKVMN model in that we consider the
student’s exercising duration in the update process. For

comparison, DKVMN ignores this student behavior feature.
Specifically, the work in [8] proposed that the a student’s
duration of solving a problem is related to her master level
of latent problem solving skills. Inspired by this work, in
our model, after a student finishes an exercise, her answer
result (i.e., correct or wrong) at and exercising duration are
used to update Mv

t . Because the exercising duration is a
continuous variable, it is firstly discretized according to its
distribution and then represented by its embedding t. We
then concatenate t with the joint embedding st of the answer
vector (qt,at), to update Mv

t , as shown in Fig. 1.

The other update process is same as that of DKVMN. It
includes erase subprocess and add subprocess. Erase vector
is computed as e = Sigmoid(ET [st, t]), where E is the erase
weights. Add vector is computed as a = Tanh(DT [st, t]),
where D is the add weights. Then the new memory matrix
Mv

t+1 is computed by

Mv
t+1(i) = Mv

t (i)[1−w(i)e][1 + w(i)a]

The parameters of the model are learned by minimizing a
standard cross entropy loss between the predicted user an-
swer result pt and her true result yt:

L = −
∑
t

((ytlogpt) + (1− yt)log(1− pt))

In summary, compared with DKVMN, we design the model
structure based on the course’s concept list, and then explic-
itly consider the exercise-concept mapping relationship and
other exercise’s features during students’ knowledge tracing.

5. REINFORCEMENT LEARNING BASED
EXERCISES RECOMMENDATION

Based on the DKVMN-CA student knowledge tracing model,
we build a student simulator which provides environment
for reinforcement learning, and train a personalized exer-
cise recommendation agent with deep reinforcement learning
method.

Similar to [10], we model the recommendation process as a
Partially Observable Markov Decision Process (POMDP),
where the model state is the student’s latent knowledge
state and the action is the recommendation of an exercise.
At time t, the reinforcement learning agent cannot observe
the student’s latent knowledge state st. Instead, it can
observe the student’s exercise and answer result (i.e., cor-
rect or wrong) ot which is conditioned on the latent knowl-
edge state p(ot|st). Thus, at time t, the agent needs to
recommend an exercise at based on the student’s exercis-
ing history before t, which is denoted by ht. We have
ht = (o1, a1, o2, a2, . . . , ot−1, at−1). After the student fin-
ishes the recommended exercise at, her latent knowledge
state will turn to st+1 by a transition function p(st+1|st, at).

We define the reward rt of an action at as

rt =
1

K

K∑
i=1

Pt+1(qi), (1)

where K is the number of exercises , and Pt+1(q) denotes
the probability of the student getting exercise q correct af-
ter finishing the recommended exercise at state st+1. It is

predicted by the student simulator. So, we name it as the
student’s Predicted Knowledge.

The purpose of optimization is to maximize the reward R of
policy π:

R = Eτ [

∞∑
t=1

γt−1r(st, at)],

where trajectories τ = (s1, o1, a1, s2, o2, a2, ...) are drawn
from the trajectory distribution induced by policy π : p(s1)
p(o1|s1)π(a1|h1)p(s2|s1, a1)p(o2|s2)π(a2|h2).... Thus, as for
the action-value functionQπ, the reward of the recommended
exercise sequence at t is:

Qπ(ht, at) = Est|ht [rt(st, at)]+Eτ>t|ht,at [

∞∑
i=1

γir(st+i, at+i)]

where τ > t = (st+1, ot+1, at+1...) is the future trajectory.
The algorithm then recommends the exercise q′ which has
the maximal reward, i.e., q′ = maxaQ

π(ht, a). Similar
to [10], we approximately solve the POMDP using Trust
Region Policy Optimization (TRPO) algorithm [11], with
an off-the-shelf implementation from rllab [4].

6. PERFORMANCE EVALUATION
In this section, we present the performance evaluation re-
sults of our system.

6.1 DKVMN-CA Knowledge Tracing Model
We evaluated our model on our IPS dataset. To evaluate
it, we conducted 50 experiments. In each experiment, we
randomly split the users into two groups: training users and
testing users. Their percentages are 70% and 30%. We then
trained the model with the training users and evaluated the
model on the testing users. Similar to [9], we use area under
the curve (AUC) as the performance metric. We report the
maximal, mean, and the standard deviation of the testing
users’ AUCs of all 50 experiments.

6.1.1 Efficiency of Concept-Aware Design
We first report the efficiency of designing the model’s archi-
tecture based on the course’s knowledge concepts. We com-
pare the performance of DKVMN and DKVMN-CA without
the help of other input features, including exercise difficulty,
stage, and duration. The results are shown in Table. 1. See
the rows ”DKVMN” and ”DKVMN-CA”. As shown in Ta-
ble. 1, our model obtains an AUC of 0.724, which is higher
than that of DKVMN model, i.e., AUC = 0.712. Such an
improvement is considerable, considering the small improve-
ment DKVMN provides over the DKT baseline (AUC =
0.711). Such a result means that the design of the model’s
architecture based on the course’s knowledge concepts is ef-
ficient.

To highlight the necessity of our design, we also evaluate
another method which also uses exercises’ knowledge con-
cept tags, i.e., represents a knowledge concept by its em-
bedding and then concatenate it with the embedding of the
exercise. Its’ performance is shown in Table. 1. See the
row ”DKVMN-KC”. As shown in Table 1, its mean AUC is
0.714, meaning a very small improvement over the DKVMN
(AUC = 0.712). Thus, it is necessary to design the model’s

Table 1: AUC of Models with Different Features
Model Mean AUC Max AUC Variance
LSTM 0.711 0.712 1.86e-05
DKVMN 0.712 0.720 2.05e-05
DKVMN-KC 0.714 0.724 1.85e-05
DKVMN-CA 0.724 0.731 2.14e-05
DKVMN-CA +
Stage

0.728 0.736 1.48e-05

DKVMN-CA +
Duration

0.725 0.737 1.75e-05

DKVMN-CA +
Difficulty

0.726 0.736 2.44e-05

DKVMN-CA +
Stage, Duration

0.726 0.739 2.43e-05

architecture based on the course’s knowledge concepts to
fully utilize their capacity to improve the model.

6.1.2 Efficiency of Other Exercise Features
We then evaluate the efficiency of adding other features,
including exercise difficulty, stage, and duration. The re-
sults are shown in Table 1. See the rows ”DKVMN-CA +
Difficulty”, ”DKVMN-CA + Stage”, and ”DKVMN-CA +
Duration”. As shown in Table 1, these features can further
improve the model’s performance. For example, the mean
AUC of ”DKVMN-CA + Stage” is 0.728, which is higher
than that of DKVMN model (AUC = 0.712).

6.2 Exercises Recommendation
6.2.1 Evaluation of Students’ Knowledge Growth Pro-

cess
We use the Expectimax algorithm proposed in [9] as the
baseline algorithm. In the Expectimax algorithm, the sys-
tem first calculates a student’s predicted knowledge assum-
ing an exercise is recommended to the user to practice. It
then chooses the exercise with the highest predicted knowl-
edge to recommend.

To compare the two algorithms, we first randomly pick 15
students in our dataset. For each student, we conduct two
experiments, one experiment for one algorithm. In each
experiment, we first initialize the student simulator using
the student’s historical practice sequence. Then, we con-
tinuously recommend 50 exercises to the student simulator
with the recommendation algorithm. During the process,
we record the average of the 15 students’ predicted knowl-
edge as Eq.(1) at each step of recommendation. The results
are shown in Fig. 2. As shown in Fig. 2, the students
served by RL policy has a higher mean predicted knowledge
than the students served by the Expectimax policy after 50
exercises. Moreover, after about 10 exercises, the mean pre-
dicted knowledge of the students served by the Expectimax
policy stops increasing, meaning that the policy cannot find
exercises which can help the students to improve the perfor-
mance any more. For comparison, served by the RL policy
which considers long-term reward of action, the students’
mean predicted knowledge keeps increasing, meaning that
the RL policy still can find exercises which can help the
student to improve performance.

0 10 20 30 40 50
Step

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Pr
ed

ict
ed

 K
no

wl
ed

ge

RL Policy
Expectimax Policy

Figure 2: Performance evaluation results

(88
, 5
, 0
)

(92
3,
4,
1)

(17
5,
2,
1)

(19
58
, 2
, 1
)

(89
, 2
, 0
)

(76
0,
3,
1)

(64
2,
6,
0)

(64
2,
6,
1)

(12
78
, 1
, 1
)

(76
0,
3,
1)

Exercise Sequence

1

2

3

4

5

6

Kn
ow

le
dg

e
Co

nc
ep
ts

0.0

0.2

0.4

0.6

0.8

Figure 3: Knowledge State Variation

6.2.2 Evaluation of Recommendation Process
We design another experiment to observe the recommenda-
tion behavior of the RL policy. We randomly pick a student
who has practiced five exercises, and use her exercise se-
quence to initialize the student simulator. Then, we serve
her with five more exercises using the RL recommendation
policy. Fig. 3 shows the results. The x label of Fig. 3 shows
the 10 exercises’ IDs, concepts, and results. For example,
the first record (88, 5, 0) means that the exercise ID is 88,
which is related to concept 5, and the student’s answer is
wrong. As the 10 exercises are related to 6 concepts, we
plot the student’s predicted knowledge of each concept in
Fig. 3. For instance, as the student fails in the first exercise
88, which is related to the 5th concept, the student’s knowl-
edge status on the 5th concept is relatively low. The status
of the knowledge concepts not covered by the student’s his-
tory exercises are indicated in black. We now observe the
recommended exercises. We have the following observations:

• As shown in Fig. 3, the first five exercises are related to
concepts 2,4,5, and the later five exercises are related
to concepts 1,3,6, suggesting the RL algorithm wants
to explore the student’s capacity in other concepts.

• After the student succeeds in exercise 760, which is
related to the concept 3 (Decomposition of Prime Fac-
tor), the algorithm recommends the exercise 642, which
is related to concept 6 (Maximum common factor and
Least common multiple). As concept 6 is related to
concept 3, such a recommendation is reasonable.

• The student, however, fails to finish the exercise 642.
Thus, the algorithm recommends exercise 642 again.
This time, the student succeeds to finish it, meaning
that the model captures the phenomenon during train-
ing that a student who failed in exercise 642 may suc-
ceed if she retries. Such a result is interesting.

• After the student succeeds in exercise 642, which is
related to concept 6 (Maximum common factor and
Least common multiple), the model’s estimation of
the student’s capacity on concept 3 (Decomposition
of Prime Factor)also slightly increases. As these two
concepts are indeed related, such a result is reasonable.

• Then, the algorithm turns to another concept again,
i.e., it recommends the exercise 1278, which is related
to concept 1. While the student succeeds in the exer-
cises, the estimated student’s knowledge status on the
concept 1, however, is relatively low, suggesting that
the exercise is relative easy.

• At last, the exercise 760 is recommended again, and the
student succeeds in it. As a result, the model’s estima-
tion of the student’s capacity on concept 3 increases,
suggesting that reviewing is beneficial for study.

7. CONCLUSION
In this paper, we improve DKVMN by designing its neu-
ral network structure based on a course’s concept list, and
explicitly considering the exercise-concept mapping relation-
ship during students’ knowledge tracing. We also enhance
the DKVMN model to consider more input features. Ex-
perimental results show that our model has higher perfor-
mance than existing deep knowledge tracing models. We
also propose an exercises recommendation algorithm which
uses model-free reinforcement learning with neural network
function approximation to learn an exercise recommenda-
tion policy that directly operates on raw observations of a
student’s exercise history. Our experimental results demon-
strate that our policy achieves better performance than ex-
isting heuristic policy in terms of maximizing the students’
knowledge level. To the best of our knowledge, this is the
first time that deep reinforcement learning has been applied
to personalized mathematic exercise recommendation.

8. ACKNOWLEDGEMENT
This work was supported by National Natural Science Foun-
dation of China under Grants 61572071, 61872031, and 61301082.

9. ADDITIONAL AUTHORS
Additional authors: Guangyan Wang (College of Education,
Hebei University, email: gywang@163.com).

10. REFERENCES
[1] I.-A. Chounta, B. M. McLaren, P. L. Albacete, P. W.

Jordan, and S. Katz. Modeling the zone of proximal

development with a computational approach. EDM,
2017:56–57, 2017.

[2] B. Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes.
Multi-armed bandits for intelligent tutoring systems.
arXiv preprint arXiv:1310.3174, 2013.

[3] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and
P. Abbeel. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pages 1329–1338, 2016.

[5] W. Jiang, Z. A. Pardos, and Q. Wei. Goal-based
course recommendation. pages 36–45, 2018.

[6] M. Khajah, R. V. Lindsey, and M. C. Mozer. How
deep is knowledge tracing? arXiv preprint
arXiv:1604.02416, 2016.

[7] A. S. Lan and R. G. Baraniuk. A contextual bandits
framework for personalized learning action selection.
In EDM, pages 424–429, 2016.

[8] R. Pelánek and P. Jarušek. Student modeling based on
problem solving times. International Journal of
Artificial Intelligence in Education, 25(4):493–519,
2015.

[9] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. volume 3, pages págs. 19–23, 2015.

[10] S. Reddy, S. Levine, and A. D. Dragan. Accelerating
human learning with deep reinforcement learning.
2017.

[11] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz. Trust region policy optimization. In
International Conference on Machine Learning, pages
1889–1897, 2015.

[12] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[13] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th international conference on
World Wide Web, pages 765–774. International World
Wide Web Conferences Steering Committee, 2017.

