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Abstract—In this paper we introduce a new application layer
objective QoE metric and propose a machine learning approach
to infer the introduced metric for QoE estimation based on
features abstracted from encrypted traffic. Experimental results
show that our method can infer video users QoE with an accuracy
higher than 80%.

1. INTRODUCTION

Video streaming has become the main application on the
Internet, which accounts for nearly 58% of the total Internet
traffic in 2018 [1]. It is critical for network operators to
understand Quality of Experience (QoE) perceived on user
sides. However, assessing QoE is challenging since not only
it subjective, but also application-specific, and the operators do
not have access to applications at terminal device to get infor-
mation on objective metrics impacting QoE. Instead, operators
have to passively monitor network traffic to infer objective
QoE metrics, which tends to be more and more complicated by
many video being transmitted on HTTP Adaptive Streaming
(HAS) and encrypted [2].

One way to estimate HAS video QoE is using machine
learning methods to learn the relationship between network
traffic and application layer objective QoE metrics [3], [4].
Stalls during video playback is important factor impacting
QoE [5]. Since stalls typically happen due to empty playback
buffers, the buffer occupancy or length is usually used as an
objective QoE metric [6]. However, we find that not only the
absolute buffer length but also the variation tendency of buffer
length is related to QoE. Thus we use the combination of them
as a new application layer objective metric to indicate user
QoE. We then propose an approach to infer the QoE metric
for estimating QoE from encrypted network traffic.

Our contributions in this paper are as follows:

o« We introduce a new application layer objective QoE
metric, and propose a machine learning method to predict
the metric for assessing QoE from encrypted traffic.
Experimental results show that our method can infer
video users QoE with an accuracy higher than 80%.

e Our approach is based on the statistical characteris-
tics of network traffic. It not only can work without
client/server’s involvement, but also be applied to en-
crypted traffic.

II. NEw QoE METRIC

Fig.1 depicts the process of filling video buffer during
a video playback. According to the buffer occupancy and

buffer occupancy

max —

buffer states CL—>

time

buffer
filled up
enough

buffer
re-filled
enough

buffer buffer  buffer
dropping empty re-filled

events

player states playing
Fig. 1: The process of filling video buffer and associated events
which change buffer and player state

its variation direction, we use a new metric, called buffer-
dynamic, to describe the buffer states. The buffer goes through
four states. In Climbing (CL) state the buffer occupancy keeps
increasing from zero to the max threshold. In Swing (SW)
state the buffer length oscillates between the max and min
threshold. In Close-Empty (CE) state the buffer length keeps
falling beyond the min threshold but still higher than zero.
When the buffer is empty, it goes into Empty (EM) state.
Correspondingly the player states are shown in the bottom
of Fig.1. Events change the state of a buffer and that of
a player. For example, when the buffer becomes empty it
switches to EM state, and at the same time the player goes
into stalling state. The reason why we use buffer-dynamic to
describe buffer states is that we find it is the combination
of buffer length and its variation direction rather than buffer
length alone that exactly indicates the player state and users
viewing experience. From Fig.1 it can be seen that the buffer
occupancy would be the same in different buffer states and
player states, which correspond to different users QoE. For
example, with the occupancy of /; the buffer would stay in
CL or CE state. When the buffer is in CL state, the video
player is either starting or re-starting. In such a condition the
player keeps initializing thus the video is frozen. In contrast
when the buffer stays in CE state the player is playing video.
During this status even though the buffer length is below the
min threshold, the player would keep playing unless event
happens (e.g., buffer empty) to forcing the player to change
state. It is similar to the case where the buffer size is /; , the
buffer states can be CL or SW, and the player stays in starting



or playing state correspondingly. This observation motivates
we to use the metric of buffer-dynamic as QoE metric.

III. QoE ASSESSMENT

We propose a machine learning method to infer the QoE
metric of buffer-dynamic from encrypted video traffic.

In the training phase operators play videos and collect
sufficient videos traffic in the network as well as ground truth
of video QoE metrics directly from the video player. For
each video traffic, operators extract features and use them to
train the classifier model for QoE metric. In the testing phase,
operators extract features for a test video from its packet trace
and use the machine learning models to infer QoE metric.

Table 1 shows the features we extracted from traffic. These
features are separately computed from upstream and down-
stream traffic. Based on the client and server IP addresses,
and timestamp at which request packet is sent, request interval
can be obtained. In order to identify each video chunk, we
rely on TCP headers. Each chunk is transferred in multiple
TCP packets from the server to client. The client uses the
same ACK numbers for all received TCP packets from the
same chunks. Thus we use the ACK numbers as chunk ID to
separate video chunks. We further sum up the number of bytes
of packets from the same chunk to get byte count of each
video chunk. We also compute the size difference between
two adjacent chunks. The difference can be zero, positive or
negative value, which reflects the variation direction of the
next chunk size.

TABLE I: Features extracted.

Description

The time difference between two adjacent in-
stants of sending requests. (Upstream)

Bytes of video chunk from the server to client.
(Downstream)

The size difference between two adjacent
chunks. (Downstream)

Features

Request interval

Chunk bytes

Dif of chunk bytes

IV. REesurrs

We set up a controlled testbed in lab environment to collect
data. A PC, equipped with Ubuntu Kylin 16.04 LTS, is used
as video client and simultaneously runs Wireshark software
to monitor video traffic. The client selects and plays video
files via dash.js, an open source DASH video player. We use
TC (Traffic Control) module of the ubuntu kernel to limit the
network bandwidth accessed by PC.

The video file is Big Buck Bunny with 10 different repre-
sentations and a frame rate of 30fbps, which lasts about 10
minutes. The collected data contains 16 video traffic traces,
totally 38,338 samples, including 1694 of CL, 32472 of SW,
2380 of CE and 1792 of EM. We randomly select 70% of
samples for model training, and the remaining are used for
testing. We utilize random forest classifier contained in the
machine learning toolkit Sklearn for classification.

Table 2 exhibits the classification results. It shows that
except CE other three buffer states can be recognized with a

precision rate above 80% while recall rate of all buffer states is
at least 84%. The reason why identifying CE state with lower
accuracy is perhaps that CE is so near to SW that some of
SW samples are easily misclassified as CE. As is shown in
the confusion matrix in Table 3, although only 3.8% of SW
samples are misclassified as CE, the absolute number is close
to the number of CE samples classified correctly, which are
381 and 595 respectively.

TABLE II: Results of model evaluation.

Buffer states | Classes | Precision | Recall | Fl-score
CL 0 0.87 0.93 0.90
SW 1 0.99 0.95 0.97
CE 2 0.60 0.84 0.70
EM 3 0.80 0.94 0.87

TABLE III: The confusion matrix from evaluation.

Original Predicted label
label CL SW CE EM
CL 92.8%(464) 4.6%(23) 1.6%(8) 1.0%(5)
SW 0.56%(54) | 94.98%(9287) | 3.89%(381) 0.57%(56)
CE 0.85%(6) 6.7%(48) 83.8%(595) 8.6%(61)
EM 1.94%(10) 1.56%(8) 2.14%(11) | 94.36%(485)

V. CONCLUSION

It is crucial and challenging for network operators to esti-
mate video users QoE. We combine the video buffer length
with its variation direction and introduce a new application
layer metric to indicate video users QoE objectively. We
extract features from the statistical characteristics of encrypted
traffic and propose a machine learning methods to learn the
relationship between network traffic and the new application
layer objective QoE metric. The experimental results show that
this approach can infer users QoE with an accuracy higher than
80%. In future work we will improve the results by exploiting
features and balancing sample data.
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