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Abstract—Multi-label image recognition is a practical and chal-
lenging task. Modeling co-occurrence dependencies between cat-
egories is the key to improve performance. Existing methods use
conditional probability to measure co-occurrence dependencies,
and represent co-occurrence dependencies among all categories in
the form of directed graph. Then the Graph Convolution Network
(GCN) is applied on the directed graph to transfer dependent cat-
egory features along the edge direction. However, the occurrence
frequencies of different categories are different. Accordingly, the
conditional probabilities between a pair of common and rare
categories are highly asymmetric so that most rare categories
have no in-edges to receive transferred knowledges from other
categories. Therefore, this paper investigates the effects of edge
direction between two co-occurred categories on the recognition
performance, then proposes a model to work on a pair of directed
graphs to learn a comprehensive representation of co-occurrence
dependency. Extensive experiments on public benchmarks show
that our method can achieve better performance than baseline
models. On some multi-label image recognition datasets with
strong co-occurrence dependencies, our method can improve the
mAP by 4%.

Index Terms—multi-label, image, co-occurrence, graph

I. INTRODUCTION

Multi-label image recognition is a practical task in computer
vision. Its goal is to predict the set of categories in an
image. It can be applied to many downstream tasks, such as
pedestrian attribute recognition [8], recommendation system
[9], etc. Compared with the general image classification task,
some categories in multi-label image recognition depend on
each other, and these categories normally co-occur in an
image. Modeling this co-occurrence dependencies is the key
to improve the performance of multi-label image recognition.

The early method of multi-label image recognition is to
deal with categories independently, then the multi-label image
recognition is decomposed into several general binary classifi-
cation tasks, each task only recognizes one category. With the
development of deep convolution neural network [1], [10]–
[12], the performance of this method is also improved. In re-
cent years, many researches have improved the performance of
multi-label image recognition by modeling the dependencies
between categories. The method [13] based on recurrent neural
network (RNN) [24], [25] transforms the target categories
set into a sequence for prediction. The methods [14], [15]
based on attention mechanism [3], [4] improve the perfor-
mance by obtaining the feature map information related to

specific categories on a single image. The method [16] models
the dependencies between categories by Graph Convolutional
Networks (GCN) [17] to further improve the performance of
multi-label image recognition.

Using GCN to model co-occurrence dependencies has
achieved competitive performance, but this method still has
some shortcomings. In [16], the researchers used conditional
probabilities to quantify the co-occurrence dependencies, and
represented the co-occurrence dependencies in the form of a
directed graph. In directed graph, nodes represent categories
and directed edges represent co-occurrence dependencies, if
node A has an edge that pointed to node B, it means that under
the condition that category A appears, the category B is very
likely to appear. The GCN [17] is applied to this graph, and a
vector representation is output for each node as the classifier
vector of the corresponding category. The forward of GCN
can be summarized as the aggregation and transformation of
node features. In the feature aggregation process of directed
graph, the direction of the edge represents the direction of the
node feature aggregation, if node A has an edge that points
to the node B, then node B will aggregate the feature of node
A into its own feature, but on the contrary, node A will not
aggregate the feature of node B. The visualization process is
shown in Fig. 1. This ability to propagate information on the
graph through the aggregation of node features enables GCN
to model the graph-structure data. So the directions of edges
are important for modeling the co-occurrence dependencies.
However, there are two problems with this method.

• In the graph constructed by [16], many edges are from the
low frequency category to the high frequency category.
For example, in the MS-COCO [18] dataset, ‘person’ is
the most frequent category, with 55 nodes having edges
pointing to the ‘person’ node. This means that the features
of ‘person’ are enhanced with 55 low frequency cate-
gories. However, these low frequency categories did not
transfer features from the high frequency categories. This
will lead to insufficient information of low-frequency
categories learned by the model, which will lead to poor
performance.

• The second problem is that in many co-occurrence depen-
dency graphs built from benchmark datasets, many nodes
do not have edges pointing to themselves from other



(a)

(b)

(c)

Fig. 1. The forward propagation of GCN. (a) Initial state. Yellow nodes have
edges pointing to red node. Blue nodes have edges pointing to yellow nodes.
(b) After one time of feature aggregation, red node aggregates the features of
yellow nodes, but yellow nodes does not aggregate the features of red node.
(c) After two times of feature aggregation, the red node can get the features
of the farther neighbor nodes(blue nodes). This is the key of modeling graph
structure data.
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Fig. 2. Two directed graphs constructed from PA-100K dataset. The yellow
nodes have edges that point to themselves from other nodes. The green nodes
do not have edges that point to themselves from other nodes. (a)An edge is
defined when the conditional probability is greater than 0.4. (b)An edge is
defined when the conditional probability is greater than 0.6. As can be seen
from (a) and (b), most nodes do not have edges pointed to themselves from
other nodes.

nodes. In other words, these nodes only perform feature
transformation during the forward of GCN, but not fea-
ture aggregation. Only performing feature transformation
is equivalent to general feed-forward neural network,
which greatly limits the ability of GCN. For example,
there are 57 nodes in the directed graph constructed
by these 80 categories on MS-COCO [18] do not have
edges pointing to themselves from other nodes. In other
benchmark such as PA-100K [19], the same phenomenon
happens. Among the 26 nodes of PA-100K, 14 nodes do
not have edges pointing to themselves from other nodes.
The directed graph constructed from PA-100K dataset is
in Fig. 2.

For the first problem, an intuitive method is to reverse the
direction of the edge, so that many aggregation directions will
be from the category with higher frequency to the category
with lower frequency. In other words, when the conditional
probability P (B | A) is greater than a certain threshold, an
edge will be defined from B to A, rather than an edge from



A to B as in the baseline model. This paper evaluates the
effect of defining the direction of the edge in this way on
the performance through ablation studies. Experimental results
on benchmark datasets show that the performance of defining
direction in this way is better than that of baseline model. The
reason for this is that the category with higher frequency makes
information supplement for the category with lower frequency.
Using the features of the high frequency categories to enhance
the features of the low frequency categories can improve the
recognition performance of the low frequency categories. The
second problem can also be alleviated by using this way. After
changing the directions of edges, most nodes will have edges
pointing to themselves from other nodes. For example, in the
MS-COCO [18], only 15 nodes do not have edges pointing to
themselves from other nodes, but in the original graph, there
are 57 nodes do not have edges pointing to themselves from
other nodes. In PA-100K [19], all nodes have edges pointing
to themselves from other nodes.

Using two graphs at the same time, which are constructed
by the baseline model and our method of defining the direction
of edges, can further solve the second problem and improve
the performance. In order to improve the flexibility of the
model, two different conditional probability thresholds are
used to create a pair of asymmetric graphs. GCNs are used
to extract node features respectively. Then the outputs of
GCNs are fused as the final classifiers. Experimental results
on two benchmark datasets show that our method can improve
the performance of multi-label image recognition model. On
some multi-label image recognition datasets with strong co-
occurrence dependencies such as PA-100K [19], our method
can improve the mAP by 4%.

II. RELATED WORK

Multi-label image recognition is an extension of image
classification. Compared with image classification task, each
image in multi-label image recognition has multiple cate-
gories. There are co-occurrence dependencies between these
categories. Many researches are devoted to improving the
performance of multi-label image recognition by using co-
occurrence dependencies between categories.

Wang et al. [13] proposed to use RNN [24], [25] to model
the dependencies between categories. They converted multi-
label image recognition into predicting a category sequence
in the image. However, it is not accurate to use serialization
relation to generalize the dependencies relationship between
categories. In fact, co-occurrence dependency is a pairwise
asymmetric relationship rather than a linear chain relationship.

Zhu et al. [14] optimized the performance of multi-label
image recognition from another perspective. They used the
attention mechanism [3], [4] to find the feature map regions
associated with different categories from the image feature
map, then extracted the feature map information strongly
related to the categories for recognition. This method does not
directly use global statistical information between categories.
Wang et al. [15] combined RNN with attention mechanism,

but this method still can not accurately model co-occurrence
dependency.

Chen et al. [16] proposed to quantify the co-occurrence
dependencies between categories using the conditional prob-
abilities obtained by statistics, and represented them in the
form of directed graph, then used GCN [17] to model the
co-occurrence dependencies. This method fails to supplement
the information of the low frequency categories. In addition, a
large number of nodes in the co-occurrence dependency graph
do not have edges pointing to themselves from other nodes
which greatly limits the ability of GCN.

III. APPROACH

Firstly, this section gives an overall description of our
model. Our model is divided into two parts, full convolution
neural network part and asymmetric graphs modeling part. The
full convolution neural network (CNN) is used to extract the
image feature map F ∈ RH×W×C , then the image feature
map is compressed into a feature vector f ∈ RC by global
maximum pooling (GMP) or global average pooling (GAP).
Where H , W and C represent the height, width and channel of
the feature map respectively. In the part of asymmetric graphs
modeling, node features of two graphs constructed by two
ways to define the direction of an edge are extracted by two
GCNs, and then fused into a category classifier W = {wi}Ni=1,
where N is the number of categories. Finally, the image
feature f will do the dot product with the classifier wi of each
category, and the occurrence probability of objects belonging
to category i can be obtained through applying sigmoid
function to the dot product result. The overall framework is
in Fig 3.

A. Co-occurrence Dependency Graph

In multi-label image recognition, many categories do not
appear independently, but have co-occurrence dependencies.
One way to measure this co-occurrence dependency is to use
conditional probability [16]. For example, there are labels Li

and Lj in the dataset. P (Li | Lj) indicates the probability of
occurrence of label Li when label Lj appears. The appearing
times of label Li and Lj can be obtained from statistics on the
training dataset. At the same time, the appearing times of the
labels pair (i, j) can also be obtained. Then the conditional
probability can be evaluated by the following formula:

P (Li | Lj) = Mij/Mj (1)

P (Lj | Li) = Mij/Mi (2)

where Mi, Mj are the appearing times of label Li and Lj ,
Mij is the appearing times of labels pair (i, j).

Then two co-occurrence dependency graphs can be con-
structed according to the conditional probability. Two co-
occurrence graphs are directed graphs. In both directed graphs,
nodes are labels. The two graphs are diametrically opposite
in the direction of edge. A intuitive method is to define an
edge pointing from Lj to Li on the first graph and an edge
pointing from Li to Lj on the second graph if the conditional



Fig. 3. Overall framework of our model. Our model is divided into two parts, full convolution neural network part and asymmetric graphs modeling part. In
asymmetric graphs modeling part, there are two graphs. The two graphs have the same nodes and many edges with opposite directions. However, the first
graph has some edges but the second graph does not. This is because the thresholds used to build the two graphs are different. For example, in the first graph,
there is an edge from the gray node to the green node, but in the second graph, there is no edge from the green node to the gray node. That’s because of
P (green | gray) >= τ1 and P (green | gray) < τ2. That is what ‘asymmetric’ means.

probability P (Li | Lj) 6= 0. However, there is a problem with
this method. If P (Li | Lj) 6= 0, that means Mij > 0, so
P (Lj | Li) 6= 0. In other words, for any graph, if there is
an edge between two nodes, there must be an another edge
with different direction. This will obliterate the directivity of
the directed graph and result in the two constructed graphs
being exactly the same. In addition, since the conditional
probability is obtained by statistical method, there is noise in
conditional probability. Some minimal but not zero conditional
probabilities may be noise. The statistical results are in Fig 4.
In fact, most of the probability values are very small. These
probabilities are caused by noise and can not reflect the co-
occurrence dependencies between categories. Therefore, in
order to solve this problem, as in [16], a threshold τ is
introduced to filter conditional probability. The method is to
define an edge pointing from Lj to Li on the first graph
and an edge pointing from Li to Lj on the second graph if
the conditional probability P (Li | Lj) ≥ τ . In this way, the
direction of edges in the two graphs is completely opposite,
and the directions of node feature aggregation in the two
graphs are symmetric.

In order to increase the flexibility of the model, two
threshold parameters τ1 and τ2 are introduced. An edge
pointing from Lj to Li was defined on the first graph when
P (Li | Lj) ≥ τ1. An edge pointing from Li to Lj is defined
on the second graph when P (Li | Lj) ≥ τ2. In this way, the
influence of noise can be eliminated and the structure of the
two graphs can be diversified. Due to different thresholds, the
aggregation directions of node features in the two graphs are
asymmetric. An example are shown in Fig 3.

B. Graph Convolution Network

GCN [17] was originally proposed for semi-supervised
classification on graph structured data. The forward propa-
gation process of GCN can be summarized as aggregation
and transformation of node features. Node feature aggregation
enables the information of nodes on the graph to be propagated
to other nodes. Each node can perceive the global information
of the graph through the topological structure of the graph, so
as to enrich the node feature.

GCN takes graph as input. The information of a graph is
divided into two parts, one is the node features of the graph,
the other is the topology of the graph. Graph node features
are generally represented by scalars or vectors. In multi-
label image recognition, the 300-dimensional GloVe word
embeddings [20] of the labels corresponding to the nodes are
used as the node features. For the categories whose names
contain multiple words, the label representation are the average
of embeddings for all words. The topological structure of a
graph is represented by its adjacency matrix A ∈ {0, 1}N×N .
In a directed graph, Aij = 1 indicates that there is an edge
from node j to node i. The forward propagation process of
GCN can be calculated by the following formula:

Z = D̃− 1
2 ÃD̃− 1

2XΘ (3)

where Ã = A+ IN , IN is the identity matrix. D̃ii =
∑

j Ãij

is the degree matrix of the graph. X is the node feature
matrix. Θ ∈ Rdinput×doutput is the transformation matrix, dinput
and doutput are the dimensions of input and output, respectively.
The formula (3) can abbreviated as follows:

Z = ÂXΘ (4)
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Fig. 4. Statistical results on (a) MS-COCO and (b) PA-100K. The vast
majority of probability values are minimal, and these minimum non-zero
probabilities are caused by noise.

Â = D̃− 1
2 ÃD̃− 1

2 is called normalized adjacency matrix. The
aggregation process of node features is implied in matrix
multiplication ÂX . Let M = ÂX , and the i-th row of the
matrix M represents the feature of the i-th node feature
after feature aggregation. It can be regarded as the weighted
average of the features of the i-th node and its neighbors,
where the weight is given by the i-th row of the normalized
adjacency matrix Â. It can be seen from the above formula and
Fig. 1 that nodes can aggregate the features from the farther
neighbor nodes by stacking GCN layers, then obtain the global
information of the graph to enhance the features.

GCNs are used to get node features from the two co-
occurrence dependency graphs proposed in the previous sec-
tion. For each co-occurrence dependency graph, a two-layer
GCN is used to get node features. LeakyReLU [21] with the
negative slope of 0.2 is adopted as the non-linear activation
function after GCN layer. The reason for using only two
layers is that with the growing of the layers, the GCN will
encounter the problem of over smoothing [22]. The problem
of over smoothing can lead to the consistency of node features

and make them indistinguishable, which leads to performance
degradation. Finally, the node features of the two GCNs will
be fused and used as classifiers. Linear transformation is used
to map node features to classifier parameter space:

W = Z1W1 + Z2W2 (5)

Z1 and Z2 are the outputs of the GCNs, and W1 and W2 are
the transformation matrices. For each category, the classifier
is a C-dimensional vector, C is also the dimension of image
feature vector.

C. Convolution Neural Network

Because of its strong ability to extract spatial local features,
CNN [1], [10]–[12] has achieved great success in image
classification. In the previous research of multi-label image
recognition, ResNet101 [11] is used as the backbone network.
For fair comparison, ResNet101 is used as the backbone
network on MS-COCO [18] dataset. In order to prove the
effectiveness of our method, not only ResNet101 is taken as
the backbone network, but also ResNet50 [11] is taken as
the backbone network. On PA-100K [19] dataset, ResNet50 is
used as the backbone network. ResNet50 and ResNet101 are
pre-trained on ImageNet [2] dataset.

IV. EXPERIMENT

This section first describes the evaluation metrics and hyper-
parameters settings, then reports the experimental results on
MS-COCO [18], PA-100K [19] datasets. Finally, ablation
studies are presented.

A. Evaluation Metrics

To fairly compare with existing methods [13]–[16], the
mean average precision (mAP), average per-class precision
(CP), recall (CR), F1 (CF1) and the average overall precision
(OP), recall (OR), F1 (OF1) are reported for performance
evaluation. For each image, the labels are predicted as positive
if the confidences of them are greater than 0.5. The results
of top-3 labels are also reported for fairly comparisons.
Generally, average overall F1 (OF1), average per-class F1
(CF1) and mAP are relatively more important for performance
evaluation.

B. Hyper-parameters Settings

As in [16], the output dimensions of our two-layer GCN
are 1024 and 2048, respectively. Since the first co-occurrence
dependency graph is the same as that in [16], τ1 will be
set to 0.4 for fair comparison. Competitive performance can
be achieved by setting τ2 between 0.4 and 0.6. And the
performance will be reported when τ2 is set to 0.6. During
training, the input images are random cropped and resized into
448 × 448 with random horizontal flips for data augmentation.
For network optimization, SGD is used as the optimizer. The
momentum is set to be 0.9. Weight decay is 10−4. Cosine
annealing learning rate scheduler proposed in [23] are used as
learning rate scheduler. The initial learning rate is 0.01 and the
network is trained for 100 epochs in total. Without additional



stated, both baseline model and our model are tested in this
configuration.

C. Experimental Results

1) MS-COCO: Microsoft COCO [18] is originally con-
structed for object detection, and it has been adopted to
evaluate multi-label image recognition recently. It contains
82,081 images as the training set and 40,504 images as the
validation set. There are 80 categories in the dataset. Since
the ground-truth labels of the test set are not available, vali-
dation set is used to evaluate the performance of all methods.
Quantitative results are reported in Table I. The performance of
other methods are reported, including CNN-RNN [13], RNN-
Attention [15], Order-Free RNN [7], ML-ZSL [6], SRN [14],
Multi-Evidence [5], ML-GCN [16], etc. From Table I, our
method is better than the baseline methods in all important
metrics, whether it is using ResNet50 or ResNet101 as the
backbone network.

2) PA-100K: The PA-100K [19] dataset is constructed by
images captured from 598 real outdoor surveillance cameras,
it includes 100000 pedestrian images. The whole dataset is
randomly split into training, validation and test sets with a
ratio of 8:1:1. Every image in this dataset was labelled by 26
attributes. ResNet50 are used as the backbone network. The
evaluation results are shown in Table II. Our method has a
significant improvement over ML-GCN [16]. The significant
performance improvement is in line with our expectations be-
cause of the stronger co-occurrence dependencies between cat-
egories in PA-100K dataset compared to MS-COCO dataset.
The categories in MS-COCO dataset are derived from natural
scenes, while the categories in PA-100K dataset are pedestrian
attributes, which have stronger co-occurrence dependencies.
From the perspective of probability, it can be seen that, in the
MS-COCO dataset, the average of all conditional probabilities
greater than 0.4 is 0.58, while in PA-100K dataset, the average
of all conditional probabilities greater than 0.4 is 0.70. This
shows that the average co-occurrence dependency on PA-
100K dataset is stronger when co-occurrence dependency
exists between two categories. The experimental results show
that our method makes full use of the information about co-
occurrence dependency.

D. Ablation Studies

This section presents the results of the ablation studies. The
purpose of our ablation studies is to explore the effect of
two ways to define the direction of an edge on performance.
The model using first direction is the same as the ML-GCN
[16]. For the model using only the second direction, we only
need to change the directions of edges of the ML-GCN. The
evaluation results on MS-COCO and PA-100K are shown in
Table III, Table IV and Table V. On the MS-COCO dataset, the
performance of the second direction is slightly better than that
of the first one. On PA-100K dataset, the performance of the
second direction is significantly better than that of the first one.
However, no matter which direction is used, its performance

(a)

(b)

Fig. 5. (a) The frequency of each category. (b) Performance improvement.
Performance improvement is measured by average precision (AP). The yellow
column represents an improvement in performance, and the green column
represents a decrease in performance. The categories of the two bar graphs
are the same. It can be seen from (a) and (b) that the recognition performance
of most low frequency categories is significantly improved.

is not as good as the unified model which uses both directions
at the same time.

On the PA-100K dataset, we further analyze the perfor-
mance improvement of the second way to define the direction
of the edge for the categories with higher frequency and the
categories with lower frequency. The results are shown in the
Fig. 5. From Fig. 5, it is that using the second way to define the
direction of the edge can improve the recognition performance
of most of the low frequency categories. However, it can be
seen that the recognition performance of several categories
decreased. This shows that using the second way to define the
direction of the edge is also inaccurate for these categories. In
other words, each of the two ways has its own advantages.
Different ways are suitable for different categories. But in
terms of overall performance, it is better to use the second
way to define the direction of the edge.

V. CONCLUSION

In multi-label image recognition, it is very important to
model the co-occurrence dependencies between categories



TABLE I
EXPERIMENTAL RESULTS ON MS-COCO

Methods All Top-3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [13] 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8
RNN-Attention [15] - - - - - - - 79.1 58.7 67.4 80.4 63.0 72.0
Order-Free RNN [7] - - - - - - - 71.6 54.8 62.1 74.2 62.2 67.7

ML-ZSL [6] - - - - - - - 74.1 64.5 69.0 - - -
SRN [14] 77.1 81.6 65.4 71.2 82.7 68.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

ResNet-101 [11] 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6
Multi-Evidence [5] - 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7

ML-GCN(ResNet50) [16] 81.0 84.0 69.5 76.0 85.8 72.9 78.8 87.1 62.2 72.6 90.3 64.7 75.4
Ours(ResNet50) 81.4 83.6 70.5 76.5 84.0 74.5 79.0 88.4 64.3 73.2 89.5 65.6 75.7

ML-GCN(ResNet101) [16] 82.3 83.3 71.9 77.2 84.7 75.2 79.7 87.3 63.8 73.7 90.1 65.9 76.1
Ours(ResNet101) 82.9 86.8 70.4 77.7 87.6 74.0 80.2 90.1 63.2 74.3 91.3 65.8 76.5

TABLE II
EXPERIMENTAL RESULTS ON PA-100K

Methods All Top-3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ML-GCN(ResNet50) [16] 63.7 69.7 52.6 60.0 85.1 79.8 82.3 75.4 22.9 35.5 95.1 51.1 66.5
Ours(ResNet50) 67.0 71.5 55.2 62.3 87.9 82.3 84.4 81.3 24.0 37.1 96.1 51.6 67.1

TABLE III
ABLATION STUDIES ON MS-COCO(RESNET50)

Definition All
mAP CP CR CF1 OP OR OF1

First Definition 81.0 84.0 69.5 76.0 85.8 72.9 78.78
Second Definition 81.3 81.4 72.0 76.4 83.2 75.0 78.81

TABLE IV
ABLATION STUDIES ON MS-COCO(RESNET101)

Definition All
mAP CP CR CF1 OP OR OF1

First Definition 82.3 83.3 71.9 77.2 84.7 75.2 79.7
Second Definition 82.6 80.7 74.2 77.3 82.8 76.0 79.3

comprehensively and accurately. This paper proposes that
using high-frequency category feature to supplement infor-
mation for low-frequency category feature can improve the
recognition performance of low-frequency categories. Next,
this paper constructs a pair of asymmetric graphs using the two
ways, and then uses a unified model to model asymmetric co-
occurrence dependency on graph pair. Because of the strong
feature extraction ability of GCN, model can learn classifiers

TABLE V
ABLATION STUDIES ON PA-100K

Definition All
mAP CP CR CF1 OP OR OF1

First Definition 63.7 69.7 52.6 60.0 85.1 79.8 82.3
Second Definition 66.3 70.4 56.0 62.4 86.4 80.3 83.2

which imply co-occurrence dependencies. These classifiers
further improve the performance of multi-label recognition
model. When defining asymmetric co-occurrence dependency
graph pair, two threshold hyperparameters are used to increase
the flexibility of our model. Both quantitative and qualitative
results validated the advantages of our model.
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