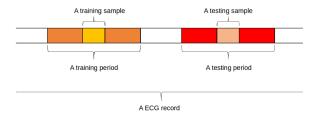
A Practical Cross-Domain ECG Biometric Identification Method

Huan Sun, Yuchun Guo, Bin Chen, Yishuai Chen

School of Electronic and Information Engineering, Beijing Jiaotong University

December 7, 2019

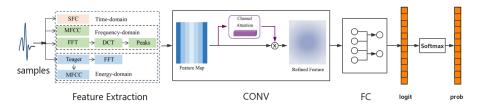
- 1 Motivation
- 2 Architecture Overview
- 3 Proposed Method
 - Dataset
 - preprocessing
 - Sample Acquisition
 - Feature Extraction
 - Channel Attention Module
- 4 Experimental Results
 - Setup
 - Results with different intervals
 - Results of different methods



Why ECG is used for identification?

- Biometric methods, such as fingerprint identification and face identification, which are widely used, are vulnerable to forgery attacks.
- ECG identification is of **higher resistance** against such attacks and receives research attention.

Problems In Practical Application

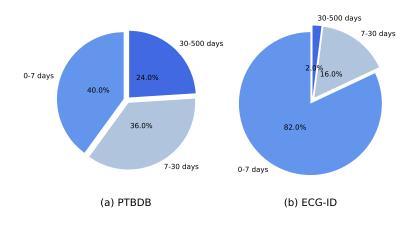

- Samples are not enough(fiducial) and effective.
- There is no significant interval, the extracted features are temporal sensitive.
- The features highly relevant to the performance are not utilized sufficiently.

Our Contributions

- We evaluate the parameter performance of the non-fiducial random sampling method to obtain enough effective samples for each individual.
- We propose a method to extract individual-distinguishable feature insensitive to timespan between feature collection and recognition period via utilizing deep features across time, frequency and energy domain.
- We introduce a channel attention module into the CNN and modify the activation function to optimize the recognition performance.

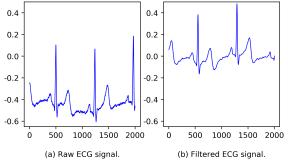
Architecture Overview

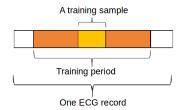
- The architecture of our proposed method contains three modules.
 - Sample acquisition: preprocessing, random start point;
 - Feature extraction: time, frequency and energy feature;
 - Deep network: convolutional layer, modified channel attention module.



Dataset

РТВ	ECG-ID
290 individuals	90 people
(549 records)	(310 records)
more than 50 individuals	default config
2 or more records	at least 2 records (!33)
Each record contains Lead I	Storing Lead I ECG signal
(On the wrist)	(On the wrist)

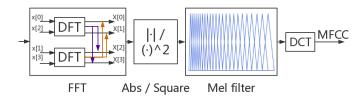

Interval distribution



Preprocessing

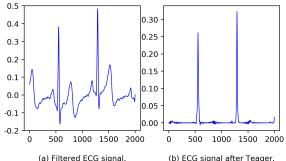
- power frequency interference, random noise and baseline drift.
- filter bank: Butterworth filter and IIR filter.

Sample Acquisition

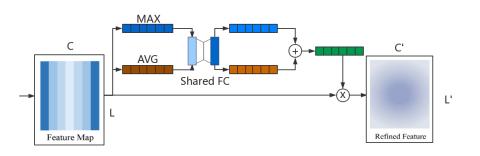

$$X_s^i = R_s^i [P_i : E_i]$$
 (1)

$$j = \begin{cases} 0, \text{ record } = \text{visit0} \\ 1, \text{ record } = \text{visit1} \end{cases}$$
 (2)

$$E_i = P_i + t * f \tag{3}$$

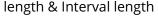

Feature Extraction

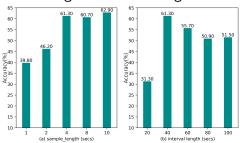
- **Time Domain**: mean, standard deviation, kurtosis, skewness.
- **Frequency Domain**: MFCC and DCT of FFT.
- **Energy Domain**: FFT of Teager and MFCC of Teager.



Feature Extraction

- **Time Domain**: mean, standard deviation, kurtosis, skewness.
- **Frequency Domain**: MFCC and DCT of FFT.
- **Energy Domain**: FFT of Teager and MFCC of Teager.


Channel attention module



replace Relu with sigmoid.

Setup

Other Parameters

- (Train Valid Test)samples: 300, 150 and 300.
- Neuron numbers: 1024 and 256.
- Activation function: ReLU -> Leaky ReLU.

School of Electronic and Information Engineering, Beijing Jiaotong University

Results with different intervals

Table: Continuous and discontinuous sampling

	PTBDB	ECG-ID
10-C-B	97%	-
10-C-O	99.2%	_
50-C-B	-	93%
50-C-O	96.6%	94.89%
50-N	40.24%	71.2%

Results of different methods

Table: Recognition results in different methods

	PTBDB	ECG-ID
DWT	40.24%	71.2%
MFCC+Peaks	50.62%	82.03%
MFCC+Peaks+SFC	53.04%	84.53%
MFCC+Peaks+SFC+FFT	56.93%	85.94%

Thanks!

Questions?

