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SUMMARY Recently, the ECG-based diagnosis system based on wear-
able devices has attracted more and more attention of researchers. Existing
studies have achieved high classification accuracy by using deep neural net-
works (DNNs), but there are still some problems, such as: imprecise heart
beat segmentation, inadequate use of medical knowledge, the same treat-
ment of features with different importance. To address these problems, this
paper: 1) proposes an adaptive segmenting-reshaping method to acquire
abundant useful samples; 2) builds a set of hand-crafted features and deep
features on the inner-beat, beat and inter-beat scale by integrating enough
medical knowledge. 3) introduced a modified channel attention module
(CAM) to augment the significant channels in deep features. Following
the Association for Advancement of Medical Instrumentation (AAMI) rec-
ommendation, we classified the dataset into four classes and validated our
algorithm on the MIT-BIH database. Experiments show that the accuracy
of our model reaches 96.94%, a 3.71% increase over that of a state-of-the-
art alternative.
key words: ECG classification, adaptive beat segmentation, multi-scale
deep features, channel attention module

1. Introduction

With the development of IoT sensor networks and the popu-
larization of electronic health applications, ECG-based di-
agnosis system has been paid more and more attention.
According to the 2018 World Health Statistics Report, in
2016, global cardiovascular diseases (CVD) caused a to-
tal of 17.9 million deaths, accounting for 44% of all non-
communicable diseases (NCD). At the same time, in China,
about 290 million people were suffering from CVD in 2016.
CVD deaths accounted for more than 40% of the deaths of
residents, ranking first, higher than cancer and other dis-
eases. As the number of cardiovascular patients is increas-
ing rapidly, the need for dynamic real-time monitoring of
heart activity is also increasing. Wu et al. [1] presented a
wearable sensor network system for Internet of Things (IoT)
connected safety and health applications. The wearable sen-
sors on different subjects can communicate with each other
and transmit the data to a gateway via a LoRa network which
forms a heterogeneous IoT platform with Bluetooth-based
medical signal sensing network. This provides abundant
biometrical data for electronic health applications. There-
fore, in the ECG-based diagnosis system, we need to im-
prove the accuracy of the algorithm.
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However, existing methods cannot attain the diagnosis
accuracy needed, because of the following problems: 1) in-
feasibility of obtaining the large sample sets needed as deep
neural network input deep neural network; 2) how to com-
plete and appropriate feature expression for a single sam-
ple; 3) how to build a classifier with clear boundary. An
ECG aided diagnosis system mainly consists of three parts,
i.e. beat segmentation, feature extraction, and classification
[2], [3]. To simplify the beat segmentation and meet the
requirement that input data is of fixed length, existing ap-
proaches emphasize fixed length beat segmentation [4]–[6].
Xiang et al. [7] segment PQRST waves with a fixed length.
In fact, since the length of a beat or a wave varies, the ex-
isting fixed-length segmentation method may result in that
the beat or wave is incomplete or redundant. Actually, this
incompleteness or redundancy affects the precision of fea-
ture extraction and confuses the classifier. As for feature ex-
traction, hand-crafted features and deep features have been
proven to be useful, but a very few studies use both of them
for beat representation. Since the hand-crafted feature is of-
ten based on medical knowledge, the combination of these
two features can compensate for the lack of medical knowl-
edge of the neural network. Meanwhile, beat, local waves
and multiple beats are important for a medical expert to clas-
sify the beat. However, the beat feature is widely used, and
inner-beat feature, which is extracted from PQRST waves,
is merely used in the work of Xiang et al. [7]. The inter-beat
feature is ignored for classification, which we define as the
correlation among multiple beats. For classification, neural
network tends to be used as classifier recently, so the learned
feature is of high dimension. However, since current work
widely uses a typical deep neural network, each dimension
is of equal importance. But obviously, different dimensions
have different importance. Therefore, the learning ability of
the classifier in the feature dimension is urgently needed to
be improved.

To improve the performance of ECG-based diagnosis
systems, we classify ECG signals with multi-scale features
based on adaptive beat segmentation. Specifically, our study
has three parts. Firstly, for beat segmentation, we propose
to segment beat, wave or multiple beats with unfixed-length
adaptively, and reshape the beat, wave or multiple beats us-
ing adaptive window lengths to fit the feature extraction and
classifier and keep the waveform vital for feature extraction
and classification unchanged. Then, for feature extraction,
we introduce both hand-crafted feature and deep feature
on multi-scales including inner-beat, beat, inter-beat scale
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to integrate more medical information with deep learning
method. Finally, for classification, we introduce a modified
channel attention module into 1-D CNN to optimize clas-
sifier ability. Our algorithm is validated on the MIT-BIH
dataset, and the results show that the performance of our al-
gorithm is superior to other related work.

The rest of this paper is organized as follows. Section 2
reviews the previous work. Section 3 explains our method
in detail. Section 4 shows the results of the experiments.
Finally, Sect. 5 concludes this paper.

2. Related Work

Our work involves three parts: beat segmentation, feature
extraction and classification. The related work of each topic
is as follows.

Beat segmentation. With R peak as a reference posi-
tion, it is a routine to segment beat with a number of samples
before and after R peak. Cimen et al. [8] firstly downsam-
pled the raw data, then they segmented beat with 61 samples
before R peak and 38 samples after R peak. Kiranyaz et al.
[9] also downsampled the raw data, after that they extracted
64 samples from both side of R peak. Zubair et al. [5] ex-
tracted 128 samples from both side of R peak without down-
sampling the raw data. Ye et al. [4] segmented beat with 100
samples before R peak and 200 samples after R peak. Fur-
thermore, Xiang et al. [7] downsampled the raw data at first,
then they segmented beat with 26 samples before R peak
and 37 samples after R peak. Based on the obtained beat,
Xiang et al. [7] segmented PQRST waves. The first 20 sam-
ples represent P wave, and the second 20 samples represent
QRS waves, while the last 24 samples represent T wave. All
of them segmented beat or wave with fixed length, without
considering the length of beat or wave varies due to differ-
ent individuals and even for the same person, the length of
beat or wave will change in different conditions. In fact,
these works of beat or wave segmentation are simplified in
an unreasonable way.

Feature extraction. For beat representation, the exist-
ing work can be divided into two categories. The first one is
hand-crafted feature and it can be obtained from frequency
domain [10], wavelet transform [11], hermite function [12]
and morphology [13]. The second one is deep feature. Many
neural networks are used, such as artificial neural network
[14], convolutional neural network [6], recurrent neural net-
work [15] and block-based neural network [16]. The above
two feature extraction methods are based on single beat. Xi-
ang et al. [7] introduced PQRST waves to improve the accu-
racy of classification. To sum up, the current studies mostly
extract beat feature from a single beat, while few considers
the inner-beat feature, not to mention the inter-beat feature.
Besides, hand-crafted feature and deep feature are proved
very useful for classification, but a very few studies clas-
sify ECG signals combining hand-crafted feature and deep
feature.

Classification. The choice of classifier is variable, but
generally, it can be divided into two categories. The first one

is traditional machine learning classifier, i.e. random forest
[17], SVM [18] and KNN [19]. Clustering algorithm, k-
means [8], is also used for classification. The second one is
neural network method. The most widely used classifier is
MLP [9]. Though the neural network has better performance
than traditional machine learning classifiers, the number of
classifiers in different works is different. Kiranyaz et al. [9]
and Xiang et al. [7] trained a classifier for each specific sub-
ject, while Zubair et al. [5] trained a classifier for all sub-
jects. A classifier trained for a specific subject with his/her
ECG records and corresponding diagnose labels can achieve
better accuracy for the same person than for others. Such a
classifier is not feasible in practice as it cannot work well for
a new patient with no records being collected. Therefore, we
are going to train a general classifier for all patients. More-
over, Hu et al. [20] proved that the channel information is
very helpful for many image tasks, such as image segmenta-
tion. Woo et al. [21] extended the work and verify its perfor-
mance. The classifier used for ECG classification is just a
simple application of a commonly used classifier. The limi-
tation of commonly used classifier is that the learned feature
map of each channel has the same importance. In fact, dif-
ferent feature channel has different importance. The classi-
fier can be improved by modifying channel attention module
for ECG classification.

3. Method

As shown in Fig. 3, the entire multi-input 1-D CNN classifi-
cation system consists of three parts: segmentation, feature
extraction and deep classifier network. In the segmentation
part, we explain adaptive beat segmentation (ABS), over-
lapping wave segmentation (OWS), and multiple beats seg-
mentation (MBS), which are important for multi-scale deep
feature extraction. Then, we detail multi-scale hand-crafted
feature extraction (HFE). After that, we introduce a modi-
fied channel attention module to enhance the ability of our
classifier on extracting channel information.

3.1 Adaptive Beat Segmentation

To segment beat, the start and the length of beat are neces-
sary. As is shown in Fig. 1, the waveform between T wave
and P wave is flat, so the boundary of current beat and pos-
terior beat is vague. But the R peak can be identified quickly
and accurately with the method by Pan et al. [22]. It is
widely accepted to use the length of RR interval, i.e. the
length between current R peak and posterior R peak, to esti-
mate the length of beat. So we define the real length of beat
i as the length of RR interval.

lis = Ri+1 − Ri (1)

where Ri means R peak of beat i, and lis means the real length
of beat i. The real length of beat is varying from Eq. (1).

As shown in Fig. 1, with R peak as a reference position,
the start of beat i can be determined by shifting leftward with
a length l f . It is known that P wave occupies a relatively
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Fig. 1 (a) The black straight solid line shows the length of RR interval. The red straight dashed line
shows the real length of beat. Based on the obtained beat, the three green solid lines shows the proposed
overlapping wave segmentation method. (b) The result of proposed adaptive beat segmentation method.
(c) The result of proposed overlapping wave segmentation method.

Fig. 2 Examples of different segmentation methods. (a) Beat segmentation method [4]. (b) Proposed
beat segmentation method. (c) Non-overlapping wave segmentation method [7] based on (a). (d) Pro-
posed overlapping wave segmentation method based on (b).

Fig. 3 The overview of proposed method. ECG record is cut into a set of beats. Then, wave and
multiple beats are obtained. Based on this, hand-crafted feature is extracted. If the CAM is used, there
are three convolutional module in neural network. Otherwise, there are two convolutional module.

fixed proportion of a beat. Then, lif is calculated as follows,

lif = n f × lis (2)

where n f means the proportion of P wave in a beat and it is
the same for all beats. The choice of parameters affects the
precision of segmented beat and will be discussed in detail
later.

Through the above two steps, such beats with varying
length need to be reshaped to beats with equal length. An
intuitive solution is scaling, but beats will be changed by
scaling differently, which hurts feature extraction and clas-
sification. Thence we use padding & truncating method.
As shown in subgraph (b) of Fig. 2, we set a parameter Ls,
which is defined as valid length. When the lis is bigger
than Ls, since the tail of T wave is useless for classifica-
tion, we truncate the beat at the end. Otherwise, we adopt
the padding strategy. Firstly, we set each R peak of beat in

the same index, and then pad the beat with zeros at the head
and the end. Moreover, the choice of the Ls should be made
carefully and reasonably, because the beat is incomplete if
Ls is too small or the beat is complete but has too many ze-
ros at the end when Ls is too big. In Sect. 4, we will choose
Ls based on the distribution of ls in MIT-BIH database.

Using the proposed ABS, we obtain beat with a fixed
length of Ls, which is called the valid length, and the real
length of beat varies. The comparison of different beat seg-
mentation methods is shown in Fig. 2.

3.2 Overlapping Wave Segmentation

To segment PQRST waves respectively and precisely, the
start and length of each wave are necessary as well. How-
ever, as shown in Fig. 1, similar to the problem of beat de-
tection, the boundaries of PQRST waves are also not clear
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enough to detect automatically, but each wave occupies a
relatively fixed proportion. To solve the problem that the
start of each wave is hard to detect, we extract wave by
overlapping sampling. Then the length of each wave can
be obtained as follows,

lip = (np + no) × lis (3a)

lir = (nr + 2 × no) × lis (3b)
lit = (nt + no) × lis (3c)
np + nr + nt = 1 (3d)

where lip, lir, lit mean the real length of P wave, QRS waves
and T wave for beat i respectively. np, nr, nt are parame-
ters that represent the proportion that each wave occupies
in a beat. no is an overlapping parameter. All these four
parameters are the same to all beats. The obtained waves
also need to be reshaped into waves with equal length. As
shown in subgraph (d) of Fig. 2, different from the beat re-
shaping method, zeros are padding to the end of each wave.
Subgraph (c) of Fig. 2 shows the results of wave segmenta-
tion method by Xiang et al. [7]. They extract PQRST waves
by dividing the beat into three non-overlapping parts based
on beat with fixed length. Their method may result in that
wave is incomplete or redundant, or even worse, the P wave
of posterior beat is mistakenly considered as the T wave of
the current beat, which is a serious disturbance to classifier.
Subgraph (d) of Fig. 2 is the result of proposed wave seg-
mentation method, and the waves is still precise.

3.3 Multiple Beats Segmentation

Heart rate variability (HRV) means the variation in time be-
tween consecutive heartbeats [23]. A variety of physiolog-
ical phenomena affect HRV, so HRV can be a significant
feature to classify different types of beats. To simplify the
procedure of feature extraction, we choose the consecutive
three beats to express HRV.
To segment multiple beats, the start and the length of mul-
tiple beats are still necessary. But firstly, we should define
multiple beats. For medical experts, multiple beats are used
to extract the correlation among beats, which in fact is to
find the difference between current beat and previous or pos-
terior beat. To enhance this difference, we define the real
length of multiple beats as three times of the real length of
the current beat. For beat i, there are both lis samples con-
tained before and after the current beat. And the real length
of multiple beats is as follows,

litr = 3 × lis (4)

where litr means the real length of multiple beats i and varies
based on lis. We also do the zero-padding or tail-truncating
at the end of multiple beats.

3.4 Hand-Crafted Feature Extraction

Based on beat, wave and multiple beats segmentation, multi-
scale hand-crafted feature can be extracted. To reflect the

average voltage strength and the changing degree in volt-
age strength of wave or beat, we calculate five parameters,
i.e. the mean, the variance, the absolute mean, the square
mean, and the square root mean of absolute value. There-
fore, 20 hand-crafted feature is obtained. And for beat, the
real length is another hand-crafted feature used. To reflect
the statistical feature among beats, the ratio of adjacent RR
intervals can is used. In this paper, five kinds of parameters
which are related to RR intervals are used as follows,

ri
1 =

RRi−1

RRi
− 1 (5a)

ri
2 =

RRi

RRi+1
− 1 (5b)

ri
3 =

RRi−1

RRi+1
− 1 (5c)

ri
4 =
|RRi−1 − RRi+1|

RRi−1 + RRi+1
(5d)

ri
5 =

RRi

RRi−1 + RRi+1
. (5e)

where RRi represents the RR interval of beat i, and
ri

1, r
i
2, r

i
3, r

i
4, and ri

5 are all ratios of different RR intervals for
beat i.

3.5 Modified Channel Attention Module

To solve the problem that CNN has limited capabilities
learning channel information, we introduce channel atten-
tion module, which helps CNN learn channel information
before classification and be proved useful in image task.
As is shown in Fig. 4, the size of input raw feature map is
C × L. Similar to Woo et al. [21], for each channel, max-
pooling and average-pooling are used. After that, a shared
full-connected (FC) module with one hidden layer is fol-
lowed. The number of neurons for the hidden layer is set to
C
r , where r is a hyperparameter called reduction ratio. The
number of neurons for output layer is set to C. Then, we
add the two tensors and multiply the new tensor with the
raw feature map. Finally, we obtain a new feature map. We
can compute the CAM as follows,

Fn = F × σ(MLP(AP(F))) + σ(MLP(MP(F)))]
= F × [σ(W1σ(W0(Fa))) + σ(W1σ(W0(Fm)))]

(6)

where σ denotes ReLU function, W0 and W1 are the FC
module weights, shared by tensors generated by max pool-
ing and average pooling. As is shown in Fig. 4, there are
several differences between our CAM and module by Woo
et al. [21]. Firstly, in the work by Woo et al. [21], the activa-
tion of the output layer in the shared FC module is sigmoid
function. But we find the accuracy will be about 1% higher
if the ReLU function is used. Secondly, we drop the activa-
tion operation after the adding operation. The reason why
we change the module is that we find the accuracy will be
higher based on the proposed method.
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Fig. 4 Modified channel attention module. There are two improvements: 1) the activation function of
the output layer is changed to ReLU function; 2) the activation operation is omitted.

4. Experiments

4.1 Dataset

The ECG dataset from MIT-BIH arrhythmia database is
used in this paper, which is considered as one of most fa-
mous standard databases. The dataset contains 48 half-hour
ECG records, obtained from 47 subjects studied by the BIH
Arrhythmia Laboratory between 1975 and 1979. All records
are passed through a band pass filter at 0.1–100 Hz and are
sampled at 360 Hz. For classification, AAMI recommen-
dations are adopted in this study. AAMI recommends that
each beat be classified into the following five beat types: N
(normal beats), S (supraventricular ectopic beats), V (ven-
tricular ectopic beats), and F (fusion beats), and Q (unclas-
sifiable beats). The following 4 records, including 102, 104,
107 and 217, are excluded in this study because these beats
do not preserve sufficient signal quality for reliable process-
ing. For the other 44 records, modified-lead II signals are
used.

There are more than 100000 beats in the database. Sim-
ilar to Zubair et al. [5], for the first 20 records (100–124)
from the MIT-BIH database, 75 beats are randomly selected
from type-N, type-S and type-V and all beats of type-F and
type-Q are selected. According to the AAMI recommended
procedure [24], a set of these 245 beats and the beats from
the first 5 minutes of the second 24 records (200–232) are
used for training. Actually, the number of beats used for
training is no more than 10%. As shown in Fig. 5, the dis-
tribution of samples for the first 5 minutes is consistent with
that for the entire dataset. All the other beats are used as
test dataset. 5000 beats are randomly selected from the test
dataset as validation dataset. The aforementioned dataset
partitioning method is adopted in all experiments. In order
to reduce data redundancy, a downsampling method has also
been adopted.

4.2 Setup

The choice of the parameters defined in Sect. 3 will be dis-
cussed detailedly in this section. For the choice of Ls, firstly,
we calculate the real length of beat for the entire MIT-BIH
database, and then count the number of beat in each interval
with a length of 50. The result shows that the beats whose

Fig. 5 The distribution of samples for the first 5 minutes and the entire
dataset.

real length range from 300 to 350 occupies the largest num-
ber on the dataset. Moreover, the most real lengths in the
database are less 300, which means most beats with fixed
length will be complete after the reshaping operation. So
we set Ls to 300. As the downsampling method is used in
our work, we finally set Ls to 100. For the choice of other
parameters, such as n f , np, nr, nt, no, first of all, we delin-
eate a range based on medical knowledge and select values
with a fixed step. Then, for different values, we draw each
beat from the first 5 minutes of all 44 records and select the
value corresponding to the best performance. For example,
we set n f with a list of [0.20, 0.25, 0.30, 0.35, 0.40, 0.45],
and we segment beat with ABS. Then, we draw the curve
and judge whether the beat is complete. We find the ABS
method performs best when n f is 0.35. We choose the value
of np, nr, nt, no in the same way. After a series of experi-
ments, we set np and nr to 0.25, nt to 0.5 and no to 0.03. The
reduction ratio, r, is set to 4 in this study.

As shown in Fig. 3, after a large number of experi-
ments, we find that for the 1-D CNN without CAM, two
convolutional modules can reach a higher accuracy, with
fewer parameters and less training time. And for the 1-D
CNN with CAM, there are three convolutional modules. As
Hu et al. [20] proved that the SE module in the later con-
volutional module is more helpful, the CAM is only used
in the third convolutional module. The number of neurons
in each layer is indicated in the parentheses, which is deter-
mined by a lot of experiments. For the first convolutional
module, a convolutional layer is followed by a max pooling
layer and a batch normalization layer, while for the second
one, there is a dropout layer after the convolutional layer.
Another thing worth mentioning is that we set the training
times to 30. What’s more, to avoid overfitting, L2 regular-
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Fig. 6 The accuracy and variance of different methods. BS notes origi-
nal beat segmentation; ABS notes adaptive beat segmentation; NWS notes
non-overlapping wave segmentation; OWS notes overlapping wave seg-
mentation; CAM notes 1-D CNN with channel attention module.

ization and early stop are also used in our network. In order
to reduce the randomness of the neural network, we repeat
all experiments for ten times, and the final experimental re-
sults are the mean of the ten experiments. Besides, we define
the model stability as follows,

stability = − log10[
1
n

n∑
i=1

(ai − a)] (7)

where n is the times of repeating experiments and is 10 in
this paper. ai is the accuracy of the experiment i. a is the
mean of ten experments. The larger stability is, the more
stable the model is.

4.3 Results of Different Segmentation Methods

To prove that beat or wave segmentation with adaptive
length is better than that with fixed length, a set of exper-
iments using different beat or wave segmentation methods
are done in this part. In the following part, to simplify ex-
pression, we call the beat segmentation with fixed length BS,
the non-overlapping wave segmentation with fixed-length
NWS, which is based on fixed-length segmentation. And
CAM represents the 1-D CNN with CAM.

In Fig. 6, the proposed ABS method outperforms BS
method in accuracy obviously, the result indicates that BS
leads into many noises, which is because that fixed-length
segmentation method may result in beat is incomplete or re-
dundant. For feature extraction and classification, this in-
completeness or redundancy actually is a kind of noise. The
accuracy of combination of ABS and OWS is not higher
than 1% of that of combination of ABS and NWS, but sta-
bility has improved significantly. Moreover, we also vali-
date the segmentation method on CAM. The combination
of ABS and OWS on CAM outperforms the combination of
ABS and OWS, that proves the validity of CAM. In a word,
the proposed methods are more accurate and stable than re-
lated works.

Table 1 The comparison of related work. Proposed without HF means
the network without hand-crafted feature. The accuracy in the parentheses
is the result of 1-D CNN with CAM.

Methods Acc
Tang et al. [25] 91.7%
Zubair et al. [5] 92.7%

Acharya et al. [26] 93.47%
Zhai et al. [27] 92.06%

Proposed without HF 95.70%
Proposed 96.90%(96.94%)

4.4 Results of Multi-Scale Feature

In order to prove that the multi-scale feature, i.e. inner-beat,
beat, inter-beat and hand-crafted feature, is helpful for clas-
sification, a set of experiments are done. From Table 1, the
accuracy of network without head-crafted feature (HF) is
more than 1% lower than the accuracy of the network with
it, which proves that the combination of hand-crafted feature
and deep repesentation is valid.

Table 1 shown the comparison of related work. It is
clear that the proposed method has a better performance and
achieves a great improvement in classification. As other re-
lated work only repeats experiments for one times, so we
cannot show the comparison of model stability. And the sta-
bility of the proposed model without CAM is 5.73. Though
the accuracy of the 1-D CNN with CAM (shown in paren-
theses of Table 1) is still higher than the accuracy of the
1-D CNN without the module. But the difference between
two models is much smaller, which means that multi-scale
feature can make up for the shortcomings of the 1-D CNN
without CAM. And the model stability of neural network
with CAM is 4.81. This means that on the one hand, the
models are more stable as the multi-scale feature is intro-
duced. On the other hand, the model with CAM is more
complicated and has more parameters. But to speed up the
training process and make different models have the same
hyperparameters, we use a few neurons, which may result
in that the 1-D CNN with CAM is underfitting. So the re-
sults of the network with CAM have a bigger fluctuation.
In fact, as the variance is very small (small than 10−5), it is
normal to have some fluctuation.

4.5 Performance on Each Type Beat

In order to analyze the improvement of the model in each
type, we calculate the precision, recall and F1 score. Since
the network with CAM is underfitting, we show the results
of network without CAM in Table 2. Moreover, there are
a large number of beats constructed on their own in [26]
work and [27] only show the confusion matrix of the second
24 records from MIT-BIH database in their paper, we can-
not compare with them work. We compare our work with
[5]. What’s more, though the number of beats for the whole
database is more than 100000, there are only no more than
15 beats of type Q (unclassifiable beats), which is meaning-
less. So we only show the results of the following types: N
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Table 2 The precision, recall and F1 score of different types based on
different methods. The results of [5] method are shown in parentheses.

Type N S V F

Precision
98.03%
(97.24%)

72.33%
(44.66%)

92.08%
(64.26%)

74.59%
(64.50%)

Recall
98.98%
(96.54%)

57.14%
(35.08%)

89.47%
(79.20%)

64.06%
(61.02%)

F1 score
0.99

(0.97)
0.64

(0.39)
0.91

(0.71)
0.69

(0.63)

(normal beats), S (supraventricular ectopic beats), V (ven-
tricular ectopic beats), and F (fusion beats). The type N has
more than 77000 beats. The type S has about 2500 beats.
The type S has about 6000 beats and the type F has no more
than 800 beats. It is clear that the results of proposed method
are superior to [5] work for all parameters, especially for the
types with less samples, which also are abnormal types. For
example, the precision, reall and F1 score of type S based
on our methods are improved about 0.25. The other types
also have a significant improvement.

5. Conclusion

In this paper, we propose a novel ECG classification method
and verify its performance with extensive experiments.
Our contributions are as follows: 1) we propose a novel
method of sample acquisition, that is, to segment and re-
shape variable-length beats, waves or multi beats, which has
higher accuracy than other related works and meets the re-
quirements of fixed length without changing the extracted
features; 2) to enrich the feature expression, we extract
multi-scale hand-crafted and deep features i.e. inner-beat,
beat and inter-beat scale, based on the proposed segmenta-
tion method; 3) in order to improve the learning ability of
1-D CNN, we introduce a modified channel attention mod-
ule and prove its effectiveness. We evaluate the proposed
method on MIT-BIH database, and the results show that this
method is better than existing related works in effectiveness
and stability. In the future, our work may be improved by
more accurate beat segmentation and more adequate utiliza-
tion of heart rate variability.
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